UNDERGROUND STORAGE TANK ASSESSMENT

GSA BROOKLYN MOTOR POOL

850 Third Avenue Brooklyn, New York

Prepared For:

U.S. GENERAL SERVICES ADMINISTRATION

Contract Number: GS-10F-0157K

On behalf of:

U.S. General Services Administration Office of Property Disposal United States of America

Prepared By:

MACTEC ENGINEERING AND CONSULTING, INC. 511 Congress Street Portland, Maine, 04101

November 20, 2008

MACTEC PROJECT: 3612082116

UNDERGROUND STORAGE TANK ASSESSMENT

GSA BROOKLYN MOTOR POOL 850 Third Avenue Brooklyn, New York

Prepared For:

U.S. GENERAL SERVICES ADMINISTRATION Contract Number: GS-10F-0157K

On Behalf Of:

U.S. General Services Administration Office of Property Disposal United States of America

Prepared By:

MACTEC ENGINEERING AND CONSULTING, INC. 511 Congress Street Portland, Maine, 04101

NOVEMBER 20, 2008

MACTEC PROJECT: 3612082116

Michael Washburn

Staff Scientist

Stephen R. Walbridge Principal Scientist

TABLE OF CONTENTS

LIST	OF FIGURES	ii
LIST	OF TABLES	ii
LIST	OFACRONYMS	ii
1.0	INTRODUCTION	1-1
	1.1 PURPOSE AND SCOPE	1-1
	1.2 BACKGROUND	1-1
2.0	SAMPLING DESCRIPTION	2-1
3.0	RESULTS	3-1
	3.1 SOIL RESULTS	3-1
	3.2 GROUNDWATER RESULTS	3-2
4.0	CONCLUSIONS AND RECOMMENDATIONS	4-1
	4.1 CONCLUSIONS	4-1
	4.2 RECOMMENDATIONS	4-1
5.0	REFERENCES	4-1

TABLES

FIGURES

APPENDIX A - TABULATED LABORATORY ANALYTICAL RESULTS

LIST OF FIGURES AND TABLES

Figures

- 1 Site Location Map
- 2 Sampling Locations

Tables

1 Soil and Groundwater Sample Summary

LIST OF ACRONYMS

bgs below ground surface

GSA General Services Administration

LTANKS Leaking Underground Storage Tanks

MACTEC Engineering and Consulting, Inc.

MCLs Maximum Contaminant Limits

mg/kg milligrams per kilogram

NYSDEC New York State Department of Environmental Conservation

PAHs polycyclic aromatic hydrocarbons

PID photo ionization detector

SVOC semi- volatile organic compounds

TAGM 4046 Technical Administrative Guidance Memorandum #4046

USTs underground storage tanks

μg/L micrograms per liter

VOC volatile organic compounds

1.0 INTRODUCTION

1.1 PURPOSE AND SCOPE

This report presents analytical results of soil and groundwater samples collected to assess potential petroleum contamination associated with three underground storage tanks (USTs) at the U.S. General Services Administration (GSA) Motor Pool in Brooklyn, New York. MACTEC Engineering and Consulting, Inc. (MACTEC) prepared this report for the GSA Office of Real Property Disposal, which is in the process of disposing of the property. The sampling results provide a basis for recommendations for additional actions that will be necessary to complete an UST Closure Report for all the USTs at the site.

1.2 BACKGROUND

The GSA Motor Pool is located at 850 Third Avenue, Brooklyn, New York (Figure 1), and consists of an approximately 40,000 square feet lot containing a one-story concrete block building with garage facilities surrounded by a paved vehicle parking area. The building was heated using fuel oil that was stored in three 20,000-gallon USTs. The USTs are enclosed under a concrete apron with metal access plates. Records indicate that the USTs were installed in 1994, and their certification expired in 1998. Before these USTs were installed, three other USTs, installed between 1930 and 1960 and closed in 1994, occupied the same location. Reportedly, one of the three remaining USTs contains approximately 4,850 gallons of material assumed to be fuel oil.

On October 19, 1999, a spill was reported to the Leaking Underground Storage Tanks (LTANKS) database due to a tank test failure (Langan, 2007). This spill was assigned number 9908767. Two other spills were reported for the site, in 1993 and 1994, but these are believed to have been associated with the previous tanks that were closed in 1994. The sampling described in this report was conducted to address the open spill report (No. 9908767) and assess the presence of petroleum contamination in support of tank closure.

2.0 SAMPLING DESCRIPTION

Soil and groundwater sampling at the Brooklyn Motor Pool site was conducted from September 3rd through the 4th, 2008. Twelve soil borings were advanced in the vicinity of the ends of the USTs at approximately six foot intervals (Figure 2). Borings were completed by the direct-push method using a Series 66, self-propelled, GeoprobeTM system operated by Aquifer Drilling and Testing, Inc. The borings were completed down to 16 feet below ground surface (bgs), ensuring the hole was below the water table.

Discreet soil samples were collected from each boring at the water table for volatile organic compounds (VOC) analysis using EPA Method 8021 STARS. A composite sample from each boring was collected for semivolatile organic compounds (SVOC) analysis using EPA Method 8270 STARS. The composite sample was collected from six inches above to six inches below the water table interface. Samples from each boring were screened in the field using a Minirae 2000 photo ionization detector (PID). PID results and soil descriptions for each boring are presented in Table 1. The water table was identified as being the point at which the soils removed from the boring were first saturated with groundwater.

Groundwater samples were obtained from six of the borings and were taken by placing a temporary one-inch, pvc riser, with a 10 feet screen, into the boring. The water was then extracted using a peristaltic pump, and grab samples were taken for VOCs and SVOCs. The direct push equipment was decontaminated between each boring and new, temporary, pvc risers were used for each groundwater sample. The excess sample material from each boring was returned to the boring from which it came, and the boreholes were backfilled to the ground surface with cement grout.

3.0 RESULTS

Analytical results for the soil and groundwater samples collected adjacent to the three USTs are presented in tabular form in Appendix A. Soil results were compared to the Recommended Soil Cleanup Objective values from the New York State Department of Environmental Conservation *Technical and Administrative Guidance and Memorandum #4046* (TAGM 4046) and the Unrestricted Use Soil Cleanup Objectives from *Subpart 375-6: Remedial Program Soil Cleanup Objectives*. Groundwater results were compared to *New York State Part 703 Surface Water and Ground Water Quality Standards*. Several VOCs and semivolatile organic compounds SVOCs were detected in both soil and groundwater samples, but these results do not necessarily show impacts from releases from the USTs.

3.1 SOIL RESULTS

VOCs were detected in eight out of the 12 soil samples collected adjacent to the USTs. The VOCs detected in at least one soil sample include:

- Toluene
- Xylene
- P-Cymene
- Isopropylbenzene

Although the first two VOCs are typically associated with petroleum products, the detected concentrations were very low (less than 0.35 milligrams per kilogram[mg/kg]), and no VOC concentrations exceeding soil cleanup criteria were detected in any of the samples. Higher concentrations of p-cymene and isopropylbenzene (up to 0.4 mg/kg and 35 mg/kg, respectively) were detected, but these VOCs are generally not associated with fuel oil. Isopropyl benzene can be a minor component of hydrocarbon fuels, but no other fuel component compounds were detected in the sample with the highest concentration (B5), making it unlikely that a fuel release is the source of this contaminant.

A large number of the SVOCs known as polycyclic aromatic hydrocarbons (PAHs) were detected in several of the soil samples. The highest concentrations were detected in the samples from borings B5 and B6, where concentrations exceeding soil cleanup criteria for the following PAHs were detected:

- Benzo(a)anthracene
- Benzo(a)pyrene
- Benzo(b)fluoranthene
- Benzo(k)fluoranthene
- Chrysene
- Dibenzo(a,h)anthracene
- Indeno(1,2,3-cd)pyrene

Although the presence of PAHs can indicate petroleum contamination, these compounds are also components of asphalt, which was observed as being prevalent in the fill soils around the tanks. The absence of significant VOC concentrations suggests that the PAH detections are likely not associated with releases of fuel oil from the USTs.

3.2 GROUNDWATER RESULTS

No VOCs were detected in two out of the six groundwater samples, and only trace concentrations (less than 3 micrograms per liter $[\mu g/L]$) were detected in three of the samples. The sample from Boring B6 contained the highest VOC concentrations, which ranged up to 15 $\mu g/L$ (total xylenes) but were all well below federal drinking water standards (Maximum Contaminant Limits [MCLs]).

Trace concentrations of PAHs were detected in all six of the groundwater samples, with the highest concentrations detected in the sample from Boring B11. Only one individual PAH concentration exceeded 5 μ g/L (9 μ g/L of phenanthrene at GW-11), but the total PAH concentrations in two samples (GW-06 and GW-11) exceeded the MCL of 5 μ g/L for PAHs.

4.0 CONCLUSIONS AND RECOMMENDATIONS

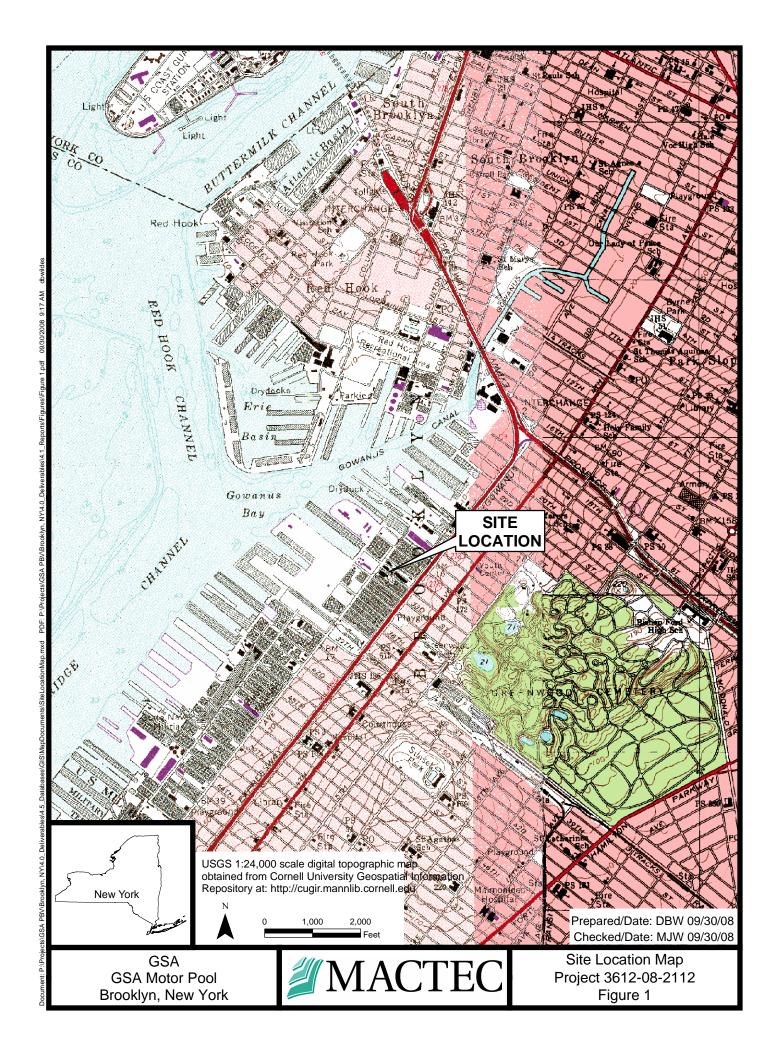
4.1 CONCLUSIONS

Based on the sampling results and other available information, MACTEC presents the following conclusions:

- Soil and groundwater samples collected at the water table at both ends of each UST were appropriately located to reflect impacts of petroleum releases from the USTs.
- Detections of low concentrations of VOCs and SVOCs in soil and groundwater could
 indicate that releases of petroleum hydrocarbons have occurred in the vicinity of the three
 USTs, but more likely reflect impacts from the placement of fill material at the site.
- Although the USTs failed a leak test in 1999, greater impacts to soil and groundwater than
 those detected would be expected if the tanks had a significant leak for the nine years since
 the test failure.
- The absence of evidence of significant releases from the USTs supports the possible closure of the tanks in place.

4.2 RECOMMENDATIONS

To complete closure in place for all three USTs, MACTEC recommends the following:


- Remove all product remaining in the tanks, and clean the tanks of any remaining liquids and accumulated sludge.
- Remove any piping associated with the tanks, including fill pipes, vents, and feed lines.
- Fill each tank with an inert solid material such as sand or cement.
- Notify the New York State Department of Environmental Conservation (NYSDEC) and the New York City Fire Department at least 30 days before initiating closure actions, and confirm closure on a modified Bulk Storage Application form submitted to NYSDEC within 30 days of completing the work.

These actions will also be required if GSA decides to remove the tanks rather than closing them in place.

5.0 REFERENCES

Langan, 2007. *Investigation Summary Report. Motor Pool Parcel, 870 Third Avenue, Brooklyn, NY*. Prepared for Time Equities, Inc. 55 5th Avenue, New York, NY 10003. Prepared by Langan Engineering and Environmental Services, P.C. 360 West 31st Street, New York, NY 10001. August 20, 2007.

FIGURES

TABLES

Checked by: SRW 9/30/08

Table 1 Soil and Groundwater Sample Summary

	PID ¹			
	Reading	Depth		
Boring	$(PPM)^2$	(feet)	Samples taken	Description at sample location
1	< 0.1	13.5	soil	Asphalt like, silty sand with large cobbles, dark grey to black.
2	< 0.1	13	soil & water	Orange silt/fine sand with some coarse sand.
3	0.8	13	soil	Orange to dark grey, medium to fine sand with some gravel.
4	1.5	13	soil & water	Black to dark grey, gravel and coarse sand, grading to medium to fine sand.
5	13.8	13	soil	Black to dark grey, coarse sand and gravel. Very little recovery.
6	5.6	13	soil & water	Black to dark grey coarse sand and gravel, grading to grey medium/fine sand.
7	0.2	13	soil	Dark orange to grey, medium/fine sand and silt with some cobbles.
8	0.2	13	soil & water	Dark orange to grey, medium/fine sand with some pockets of green. Also had gravel and some cobbles.
9	0.1	14	soil	Dark orange to grey, medium/fine sand with some gravel and cobbles.
10	0.2	14	soil	Dark orange to grey, medium/fine sand with some gravel and cobbles.
11	0.2	14	soil & water	Dark orange to grey, medium/fine sand with some gravel and cobbles.
12	0.1	14	soil & water	Dark orange to grey, medium/fine sand with some gravel and cobbles.
Notes:				Prepared by: MJW 9/30/08

Samples were taken at the groundwater table.

All soil and groundwater samples were analyzed for volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs).

- 1. PID=photoionization detector
- 2. PPM=parts per million

APPENDIX A TABULATED LABORATORY ANALYTICAL RESULTS

BROOKLYN, NY UST Brooklyn, NY UST METHOD 8021 - VOLATILE ORGANICS (STARS)

Client ID Job No Lab ID Sample Date		B1 A08-A852 09/03/2008	A8A85201	B10 A08-A852 09/04/2008	A8A85216	B11 A08-A852 09/04/2008	A8A85217	812 A08-A852 09/04/2008	A8A85219
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Benzene	UG/KG	ND	5.6	ND	4.4	ND	5.3	ND	4.8
Ethylbenzene	UG/KG	ND	11	ND	8.7	ND	. 10	ND	9.6
Toluene	UG/KG	340	11	ND	8.7	ND	10	38	9.6
o-Xylene	UG/KG	ND	11	, ND	8.7	ND	10	· ND	9.6
m-Xylene	UG/KG	12 1	11	ND	8.7	ND	10	ND	9.6
p-Xyl ene	UG/KG	ND 1	11	ND	8.7	ND	. 10	ND ND	9.6
Total Xylenes	UG/KG	12	11	ND	8.7	, ND	10	ND ND	9.6
Isopropylbenzene	UG/KG	ND	11	ND	8.7	ND ND	10	ND	9.6
n-Propylbenzene	UG/KG	ND	11	ND	8.7	: ND	- 10	ND	9.6
p-Cymene	UG/KG	360	11	ND	8.7	ND	10	ND	9.6
1,2,4-Trimethylbenzene	JUG/KG	ND	11	ND	8.7	ND	10	ND	9.6
1,3,5-Trimethylbenzene	UG/KG	ND	11	ND -	8.7	ND	10	ND	9.6
n-Butylbenzene	UG/KG	ND	11	ND	8.7	, ND	10	ND ND	9.6
sec-Butylbenzene	UG/KG	ND	11	ND	8.7	ND	10	ND ND	9.6
tert-Butylbenzene	UG/KG	ND	11	ND	8.7	DN	10	. ND	9.6
Methyl-t-Butyl Ether (MTBE) ————SURROGATE(S)	UG/KG	ND	28	ND	22	ND	26	ND	24
p-Bromofluorobenzene	1%	104	66-138	105	66-138	106	66-138	100	66-138
a,a,a-Trifluorotoluene	%	97	66-141	96	66-141	97	66-141	91	66-141

BROOKLYN, NY UST Brooklyn, NY UST METHOD 8021 - VOLATILE ORGANICS (STARS)

Client ID Job No Lab ID Sample Date		B2 A08-A852 09/03/2008	A8A85202	B3 A08-A852 09/03/2008	A8A85204	B4 A08-A852 09/03/2008	A8A85205	B5 A08-A852 09/03/2008	A8A85207
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Benzene	UG/KG	ND	4.8	ND	3.6	ND	6.3	ND.	66
Ethylbenzene	UG/KG	ND.	9.6	ND .	7.3	l ND	12	ND	130
Toluene	UG/KG	ND	9.6	5 3	7.3	460	12	ND	130
o-Xylene	UG/KG	ND	9.6	ND ·	7.3	ND	12	ND ND	130
m-Xylene	UG/KG	ND	9.6	8.8 1	7.3	ND	12	ND ND	130
p-Xylene	UG/KG	ND ·	9.6	ND 1	7.3	ND	12	- ND	130
Total Xylenes	UG/KG	ND	9.6	8.8	7.3	ND.	12	ND ND	130
Isopropylbenzene	UG/KG	ND	9.6	ND	7.3	. ND	12	35000	130
n-Propylbenzene	UG/KG	ND	9.6	ND .	7.3	ND ND	12	ND ND	130
o-Cymene	UG/KG	ND .	9.6	ND	7.3	510	12	ND	130
1,2,4-Trimethylbenzene	UG/KG	ND	9.6	ND .	7.3	ND	12	ND	130
1,3,5-Trimethylbenzene	UG/KG	ND	9.6	ND .	7.3	ND	12	ND	130
n-Butylbenzene	UG/KG	ND	9.6	ND .	7.3	. ND	12	ND	130
sec-Butylbenzene	UG/KG	ND	9.6	ND	7.3	59	12	ND	130
tert-Butylbenzene	UG/KG	ND	9.6	ND	7.3	ND	12	ND ND	130
Methyl-t-Butyl Ether (MTBE) ————SURROGATE(S)————	UG/KG	ND	24	ND ,	18	ND	31	ND	330
p-Bromofluorobenzene	1%	101	66-138	100	66-138	112	66-138	47 *	66-138
a,a,a-Trifluorotoluene	% .	94	66-141	94	66-141	103	66-141	38 *	66-141

BROOKLYN, NY UST Brooklyn, NY UST METHOD 8021 - VOLATILE ORGANICS (STARS)

Client ID Job No Lab ID Sample Date		B6 A08-A852 09/03/2008	A8A85208	B7 A08-A852 09/04/2008	A8A85210	B8 A08-A852 09/04/2008	A8A85211	B8 DUP A08-A852 09/04/2008	A8A85212
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Benzene	UG/KĠ	ND	7.1	ND	3.7	ND	4.4	-ND	5.1
Ethylbenzene	UG/KG	ND	14	· ND	7.4	ND	8.8	ŅD	10
Toluene	UG/KG	190	14	ND	7.4	ND	8.8	ND	· 10
o-Xylene	UG/KG	190	14	ND .	7.4	ND	8.8	ND	10
m-Xylene	UG/KG	36 1	14	ND	7.4	ND	8.8	ND	10
p-Xylene	UG/KG	·ND 1	14	ND	7.4	ND	8.8	ND	10
Total Xylenes	UG/KG	- 230	14	ND	7.4	ND	8.8	ND	10
Isopropylbenzene	UG/KG	ND	14	ND	7.4	ND	8.8	ND	10
n-Propylbenzene	UG/KG	ND	14	ND	7.4	ND	8.8	ND	10
p-Cymene	UG/KG	400	14	200	7.4	ND	8.8	ND	10
1,2,4-Trimethylbenzene	UG/KG	ND	14	ND ·	7.4	[⊕] ND	8.8	ND	10
1,3,5-Trimethylbenzene	UG/KG	ND	14	ND	7.4	ND	8.8	ND	10
n-Butylbenzene	UG/KG	ND	14	ND	7.4	ND	8.8	ND	10
sec-Butylbenzene	UG/KG	ND	14	ND .	7.4	, ND	8.8	ND	10
tert-Butylbenzene	UG/KG	ND	14	ND '	7.4	ND	8.8	ND	10
Methyl-t-Butyl Ether (MTBE) ————SURROGATE(S)	UG/KG	ND	35	ND	19	ND	22	ND	26
p-Bromofluorobenzene	%	80	66-138	104	66-138	100	66-138	102	66-138
a,a,a-Trifluorotoluene	%	70	66-141	96	66-141	92	66-141	94	66-141

BROOKLYN, NY UST Brooklyn, NY UST METHOD 8021 - VOLATILE ORGANICS (STARS)

Client ID Job No Lab ID Sample Date	i.	B9 A08-A852 09/04/2008	A8A85215						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Benzene	UG/KG	ND	7.5	NA NA		NA		NA	
Ethylbenzene	UG/KG	ND	15	NA		NA	,	NA	
Toluene	UG/KG	ND	15	NA NA		. NA	1	· NA	
o-Xylene	UG/KG	ND	15	'NA		NA		NA NA	
m-Xylene	UG/KG	ND	15	NA NA		NA NA		NA NA	
p-Xylene	UG/KG	ND	15	NA NA	•	NA	· ·	NA NA	
Total Xylenes	UG/KG	ND	15	NA '		NA NA		NA NA	
Isopropylbenzene	UG/KG	. ND	15	NA ·	• '.	NA ·		NA NA	
n-Propylbenzene	UG/KG	ND	15	NA .		. NA		NA NA	
p-Cymene	UG/KG	260	15	NA		NA		NA	
1,2,4-Trimethylbenzene	UG/KG	ND	15	NA		NA NA		NA	
1,3,5-Trimethylbenzene	UG/KG	ND	15	NA .		NA		NA	
n-Butylbenzene	UG/KG	ND	15	. NA		NA NA		NA	
sec-Butylbenzene	UG/KG	ND	15	NA		NA		NA	
tert-Butylbenzene	UG/KG	ND	15	NA		NA NA		NA	
Methyl-t-Butyl Ether (MTBE) ————SURROGATE(S)———	UG/KG	ND	37	NA		NA NA		NA	
p-Bromofluorobenzene	1%	95	66-138	NA		NA NA		NA NA	1
a,a,a-Trifluorotoluene	%	89	66-141	NA		: NA		NA	

BROOKLYN, NY UST Brooklyn, NY UST METHOD 8021 - VOLATILE ORGANICS (STARS)

Client ID Job No Lab ID Sample Date		GW-02 A08-A852 09/03/2008	A8A85203	GW-04 A08-A852 09/03/2008	A8A85206	GW-06 - A08-A852 - 09/03/2008	A8A85209	GW-08 A08-A852 09/04/2008	A8A85213
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Benzene	UG/L	0.28	0.20	ND ·	0.20	ND	0.20	ND	0.20
Ethylbenzene	UG/L	ND	0.20	ND	.0.20	ND ND	0.20	ND ND	0.20
Toluene	UG/L	ND	0.20	ND	0.20	ND ND	0.20	ND .	0.20
o-Xylene	UG/L	ND	0.20	ND	0.20	11	0.20	ND ND	0.20
m-Xylene	UG/L	ND	0.40	. ND	0.40	3.8 1	0.40	ND ND	0.40
p-Xylene	UG/L	ND	0.40	ND	0.40	ND 1	0.40	ND ND	0.40
Total Xylenes	UG/L	ND	0.60	ND	0.60	15	0.60	l ND	0.60
Isopropylbenzene	UG/L	. ND	0.20	ND	0.20	ND ND	0.20	ND ND	0.20
n-Propylbenzene	UG/L	. ND	0.20	ND	0.20	l ND	0.20	l ND	0.20
p-Cymene	UG/L	ND	0.40	ND	0.40	- ND	0.40	l ND	0.40
1,2,4-Trimethylbenzene	UG/L	ND	0.20	ND -	0.20	l ND	0.20	l ND	0.20
1,3,5-Trimethylbenzene	UG/L	ND	0.20	ND	0.20	ND ND	0.20	l ND	0.20
n-Butylbenzene	UG/L	ND	0.40	ND	0.40	2.0	0.40	l ND	0.40
sec-Butylbenzene	UG/L	ND	0.40	ND	0.40	6.6	0.40	l ND	0.40
tert-Butylbenzene	UG/L	ND	0.40	ND .	0.40	ND ND	0.40	l ND	0.40
Methyl-t-Butyl Ether (MTBE) ————SURROGATE(S)	UG/L	ND ND	0.40	ND .	0.40	ND	0.40	0.21 J	0.40
p-Bromofluorobenzene	1%	98	79-115	98	79-115	110	79-115	97	79-115
a,a,a-Trifluorotoluene	%	98	79-118	98	79-118	100	79-118	96	79-118

BROOKLYN, NY UST Brooklyn, NY UST METHOD 8021 - VOLATILE ORGANICS (STARS)

Client ID Job No Lab ID Sample Date		GW-08 DUP A08-A852 09/04/2008	A8A85214	GW-11 A08-A852 09/04/2008	A8A85218	GW-12 A08-A852 09/04/2008	A8A85220		
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Benzene	UG/L	ND	0.20	ND	0.20	ND	0.20	NA NA	
Ethylbenzene	UG/L	ND	0.20	ND	0.20	ND	0.20	NA NA	
Toluene	UG/L	ND	0.20	ND ·	0.20	ND	0.20	NA NA	
o-Xylene	UG/L	, ND	0.20	0.31	0.20	- ND	0.20	NA NA	
m-Xylene	UG/L	ND	0.40	ND .	0.40	ND	0.40	NA NA	
p-Xylene	UG/L	ND	0.40	ND	0.40	ND	0.40	NA NA	
Total Xylenes	UG/L	ND	0.60	0.31 J	0.60	ND	0.60	NA NA	İ
Isopropylbenzene	UG/L	ND	0.20	1.0	0.20	ND	0.20	NA NA	ļ.
n-Propylbenzene	UG/L	. ND	0.20	1.2	0.20	ND	0.20	NA NA	
p-Cymene	UG/L	.ND	0.40	ND	0.40	ND	0.40	NA NA	
1,2,4-Trimethylbenzene	UG/L	ND	0.20	ND	0.20	ND ND	0.20	NA NA	
1,3,5-Trimethylbenzene	UG/L	ND	0.20	ND	0.20	ND	0.20	NA NA	
n-Butylbenzene	UG/L	ND	0.40	1.6	0.40	ND	0.40	· NA	
sec-Butylbenzene	UG/L	. ND	0.40	2.5	0.40	ND ·	0.40	NA	
tert-Butylbenzene	UG/L	· ND	0.40	0.30 J	0.40	ND	0.40	NA NA	
Methyl-t-Butyl Ether (MTBE) SURROGATE(S)	UG/L	0.22 J	0.40	ND	0.40	ND	0.40	NA	
p-Bromofluorobenzene	%	96	79-115	100	79-115	99	79-115	NA NA	1
a,a,a-Trifluorotoluene	%	9 7	79-118	100	79-118	100	79-118	NA NA	

BROOKLYN, NY UST Brooklyn, NY UST METHOD 8021 - VOLATILE ORGANICS (STARS)

Client ID Job No Lab ID Sample Date	- Control of the Cont	TRIP BLANK A08-A852 09/03/2008	A8A85221						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Benzene	UG/L	ND	0.20	NA .		NA		NA.	t i
Ethylbenzene	UG/L	ND	0.20	NA		NA		NA NA	
Toluene	UG/L	ND	0.20	NA		NA		NA NA	,
o-Xylene	UG/L	.ND	0.20	NA		NA NA		- NA	
m-Xylene	UG/L	ND	0.40	- NA		NA		NA NA	
p-Xylene	UG/L	ND	0.40	NA .		NA		· NA	
Total Xylenes	UG/L	ND	0.60	NA		NA		: NA	
Isopropylbenzene	UG/L	ND	0.20	NA NA		NA ·		-NA	
n-Propylbenzene	UG/L	ND	0.20	NA '		NA	1. 1.	. NA	
p-Cymene	UG/L	ND	0.40	NA		NA		NA NA	
1,2,4-Trimethylbenzene	UG/L	ND ND	0.20	NA NA		NA		NA NA	
1,3,5-Trimethylbenzene	UG/L	. ND	0.20	NA NA		NA		NA	
n-Butylbenzene	UG/L	ND	0.40	NA NA		NA		NA	
sec-Butylbenzene	UG/L	- ND	0.40	NA NA		NA		NA	
tert-Butylbenzene	UG/L	ND	0.40	NA		NA		NA	
Methyl-t-Butyl Ether (MTBE) ————————SURROGATE(S)————	UG/L	ND	0.40	NA		NA		NA	
p-Bromofluorobenzene	1%	101	79-115	NA I		NA		NA	1
a,a,a-Trifluorotoluene	1%	102	79-118	NA NA		NA NA		NA NA	

BROOKLYN, NY UST Brooklyn, NY UST METHOD 8270 - STARS SEMI-VOLATILE ORGANICS

Client ID Job No Lab ID Sample Date		B1 A08-A852 09/03/2008	A8A85201	B10 A08-A852 09/04/2008	A8A85216	B11 A08-A852 09/04/2008	A8A85217	B12 A08-A852 09/04/2008	A8A85219
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acenaphthene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(ghi)perylene Benzo(a)pyrene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene ————IS/SURROGATE(S)————————————————————————————————————	UG/KG	ND 54 J 170 J 55 J 84 J 170 J 240 BJ ND 280 J ND 65 J ND 160 J 250 J	860 860 860 860 860 860 860 860 860 860	18 J 170 J 390 360 140 J 150 J 350 B 43 J 710 25 J 140 J 16 J 370 650	200 200 200 200 200 200 200 200 200 200	16 J 41 J 140 J 150 J 50 J 66 J 120 J 140 BJ ND 240 14 J 53 J 11 J 140 J 230	200 200 200 200 200 200 200 200 200 200	34 J 64 J 260 250 89 J 94 J 220 250 B 32 J 350 34 J 92 J 26 J 250 370	200 200 200 200 200 200 200 200 200 200
1,4-Dichlorobenzene-D4 Naphthalene-D8 Acenaphthene-D10 Phenanthrene-D10 Chrysene-D12 Perylene-D12 Nitrobenzene-D5 2-Fluorobiphenyl p-Terphenyl-d14 Phenol-D5 2-Fluorophenol 2,4,6-Tribromophenol	% % % % % % % % % % % % % % % % % % %	91 92 96 92 93 115 51 57 57 57 51 41 60	50-200 50-200 50-200 50-200 50-200 50-200 35-120 43-120 51-125 38-120 30-120 46-129	106 108 108 105 104 130 62 63 72 62 55	50-200 50-200 50-200 50-200 50-200 50-200 35-120 43-120 51-125 38-120 30-120 46-129	103 106 108 102 102 129 57 62 76 58 49	50-200 50-200 50-200 50-200 50-200 50-200 35-120 43-120 51-125 38-120 30-120 46-129	92 93 95 92 92 116 68 67 70 65 56 83	50-200 50-200 50-200 50-200 50-200 50-200 35-120 43-120 51-125 38-120 30-120 46-129

BROOKLYN, NY UST
Brooklyn, NY UST
METHOD 8270 - STARS SEMI-VOLATILE ORGANICS

Client ID Job No Lab ID Sample Date		B2 A08-A852 09/03/2008	A8A85202	B3 A08-A852 09/03/2008	A8A85204	B4 A08-A852 09/03/2008	A8A85205	B5 A08-A852 09/03/2008	A8A85207
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acenaphthene	UG/KG	ND	190	ND	1900	ND ND	2100	220 J	1900
Anthracene	UG/KG	ND	190	ND	1900	140 J	2100	590 J	1900
Benzo(a)anthracene	UG/KG	9 J	190	120 J	1900	450 J	2100	3600	1900
Benzo(b)fluoranthene	UG/KG	11 J	190	94 J	1900	510 J	2100	4000	1900
Benzo(k)fluoranthene	UG/KG	ND	190	ND	1900	240 J	2100	1500 J	1900
Benzo(ghi)perylene	UG/KG	ND	190	ND	1900	140 J	2100	1900	1900
Benzo(a)pyrene	UG/KG	ND	190	84 J	1900	340 J	2100	3200	1900
Chrysene	UG/KG	30 BJ	190	300 BJ	1900	900 BJ	2100	4100 B	1900
ibenzo(a,h)anthracene	UG/KG	ND	190	ND	1900	ND	2100	540 J	1900
luoranthene	UG/KG	12 J	190	120 J	1900	720 J	2100	8500	1900
luorene	UG/KG	ND	190	ND	1900	ND	2100	210 J	1900
ndeno(1,2,3-cd)pyrene	UG/KG	ND	190	ND	1900	140 J	2100	1700 J	1900
laphthalene	UG/KG	ND	190	ND ND	1900	ND	2100	190 J	1900
henanthrene	UG/KG	10 J	190	ND ND	1900	590 J	2100	4800	1900
Pyrene	UG/KG	11 J	190	120 J	1900	720 J	2100	7500	1900
IS/SURROGATE(S)							P		
,4-Dichlorobenzene-04	/% /	98	50-200	86	50-200	101	50-200	93	50-200
laphthalene-D8	%	102	50-200	90	50-200	101	50-200	95	50-200
cenaphthene-D10	%	102	50-200	93	50-200	103	50-200	96	50-200
henanthrene-D10	%	102	50-200	90	50-200	100	50-200	95	50-200
Chrysene-D12	%	105	50-200	94	50-200	112	50-200	93	50-200
Perylene-D12	%	132	50-200	118	50-200	117	50-200	114	50-200
litrobenzene-D5	%	62	35-120	47	35-120	60	35-12 0	46	35-120
:-Fluorobiphenyl	1%	63	43-120	52	43-120	65	43-120	57	43-120
o-Terphenyl-d14	%	77	51-125	65	51-125	60	51-125	70	51-125
Phenol-D5	1%	62	38-120	53	38-120	62	38-120	56	38-120
2-Fluorophenol	%	53	30-120	43	30-120	53	30-120	44	30-120
2.4.6-Tribromophenol	1%	87	46-129	59	46-129	65	46-129	59	46-129

BROOKLYN, NY UST Brooklyn, NY UST METHOD 8270 - STARS SEMI-VOLATILE ORGANICS

Client ID Job No Lab Sample Date	ID	B6 A08-A852 09/03/2008	A8A85208	B7 A08-A852 09/04/2008	A8A85210	B8 A08-A852 09/04/2008	A8A85211	B9 A08-A852 09/04/2008	A8A85215
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acenaphthene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(ghi)perylene Benzo(a)pyrene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	UG/KG	440 J 920 J 1700 1600 580 J 760 J 1400 1700 B 200 J 3400 380 J 690 J 200 J 3300 3300	1200 1200 1200 1200 1200 1200 1200 1200	ND N	190 190 190 190 190 190 190 190 190 190	ND 19 J 77 J 79 J 24 J 38 J 85 BJ 12 J 130 J 8 J 34 J ND 67 J 140 J	200 200 200 200 200 200 200 200 200 200	11 J 35 J 110 J 120 J 44 J 54 J 100 J 130 BJ 17 J 200 11 J 42 J 18 J 100 J 190	190 190 190 190 190 190 190 190 190 190
IS/SURROGATE(S) 1,4-Dichlorobenzene-D4 Naphthalene-D8 Acenaphthene-D10 Phenanthrene-D10 Chrysene-D12 Perylene-D12 Nitrobenzene-D5 2-Fluorobiphenyl p-Terphenyl-d14 Phenol-D5 2-Fluorophenol 2,4,6-Tribromophenol	% % % % % % % % % % % % % % % % % % %	109 112 112 106 105 127 60 65 60 62 55	50-200 50-200 50-200 50-200 50-200 50-200 35-120 43-120 51-125 38-120 30-120 46-129	101 103 107 104 102 123 54 56 74 55 47	50-200 50-200 50-200 50-200 50-200 50-200 35-120 43-120 51-125 38-120 30-120 46-129	108 115 115 110 109 134 46 51 69 50 42	50-200 50-200 50-200 50-200 50-200 50-200 35-120 43-120 51-125 38-120 30-120 46-129	95 98 97 94 96 120 71 70 66 71 64	50-200 50-200 50-200 50-200 50-200 50-200 35-120 43-120 51-125 38-120 30-120 46-129

BROOKLYN, NY UST Brooklyn, NY UST MACTEC - 8270 - AQ - STARS BASE NEUTRAL COMPOUNDS

Client ID Job No Lab ID Sample Date		GW-02 A08-A852 09/03/2008	A8A85203	GW-04 A08-A852 09/03/2008	A8A85206	GW-06 A08-A852 09/03/2008	A8A85209	GW-08 A08-A852 09/04/2008	A8A85213
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acenaphthene	UG/L	ND	5	0.1 J	5	0.6 J	5	ND	5
Anthracene	UG/L	0.1 J	5	ND	5	0.8 J	5	ND	5
Benzo(a)anthracene	UG/L	0.4 J	5	0.1 J	5	1 J	5	0.3 ป	· 5
Benzo(b)fluoranthene	UG/L	0.5 J	5	ND	5	2 J	5	0.3 J	5
Benzo(k)fluoranthene	UG/L	ND	5	ND	5	0.6 J	5	0.1 J	5
Benzo(ghi)perylene	UG/L	0.2 J	5	ND	5	1 J	5	0.2 J	5
Benzo(a)pyrene	UG/L	0.3 J	5	ND	5	2 J	5	0.2 J	5
Chrysene	UG/L	ND	5	ND	5	1 J	5	ND	5
Dibenzo(a,h)anthracene	UG/L	ND	5	ND	5	0.3 J	5	ND	5
Fluoranthene	UG/L	0.5 J	5	0.1 J	5	3 J	5	0.4 J	5
Fluorene	UG/L	ND	5	ND	5	0.4 J	5	ND	5
Indeno(1,2,3-cd)pyrene	UG/L	0.2 J	5	ND	5	1 J	5	0.1 J	5
Naphthalene	UG/L	0.1 BJ	5	0.1 BJ	5	0.8 BJ	5	0.3 BJ	5
Phenanthrene	UG/L	0.4 J	5	0.2 J	5	3 J	5	0.3 J	5
Pyrene	UG/L	0.4 J	5	0.2 J	5	3 J	5	0.3 J	5
IS/SURROGATE(S)									
1,4-Dichlorobenzene-D4	[%	86	50-200	86	50-200	86	50-200	80	50-200
Naphthalene-D8	%	86	50-200	85	50-200	86	50-200	80	50-200
Acenaphthene-D10	%	85	50-200	84	50-200	84	50-200	80	50-200
Phenanthrene-D10	%	87	50-200	85	50-200	87	50-200	82	50-200
Chrysene-D12	%	91	50-200	86	50-200	89	50-200	82	50-200
Perylene-D12	%	89	50-200	86	50-200	90	50-200	84	50-200
Nitrobenzene-D5	%	68	46-120	70	46-120	74	46-120	74	46-120
2-Fluorobiphenyl	%	66	48-120	62	48-120	64	48-120	70	48-120
p-Terphenyl-d14	%	48	24-136	48	24-136	42	24-136	54	24-136

BROOKLYN, NY UST Brooklyn, NY UST MACTEC - 8270 - AQ - STARS BASE NEUTRAL COMPOUNDS

Client ID Job No Lab ID Sample Date		GW-08 DUP A08-A852 09/04/2008	A8A85214	GW-11 A08-A852 09/04/2008	A8A85218	GW-12 A08-A852 09/04/2008	A8A85220		
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acenaphthene	UG/L	ND	5	5	5	0.4 J	5	NA	
Anthracene	UG/L	ND	5	1 J	5	1 J	5	NA	
Benzo(a)anthracene	UG/L	0.1 J	5	2 J	5	1 J	5	NA	
Benzo(b)fluoranthene	UG/L	ND	5	2 J	5	2 J	5	NA	
Benzo(k)fluoranthene	UG/L	ND	5	0.7 J	5	ND	5	NA	
Benzo(ghi)perylene	UG/L	ND	5	2 J	5	0.8 J	5	NA	
Benzo(a)pyrene	UG/L	ND	5	2 J	5	1 J	5	NA	
Chrysene	UG/L	ND	5	1 J	5	0.8 J	5	NA	
Dibenzo(a,h)anthracene	UG/L	ND	5	0.4 J	5	0.2 J	5	NA	
Fluoranthene	UG/L	ND	5	3 J	5	3 J	5	NA	
Fluorene	UG/L	ND	5	4 J	5	0.3 J	5	NA	
Indeno(1,2,3-cd)pyrene	UG/L	ND	5	1 J	5	0.6 J	5	NA	
Naphthalene	UG/L	0.1 BJ	5	0.6 BJ	5	0.4 BJ	5	NA	
Phenanthrene	UG/L	0.1 J	5	9	5	2 J	5	NA	
Pyrene	UG/L	ND	5	3 J	5	4 J	5	NA .,	
IS/SURROGATE(S)								-2	
1,4-Dichlorobenzene-D4	1%	87	50-200	88	50-200	79	50-200	NA NA	ĺ
Naphthalene-D8	%	86	50-200	84	50-200	78	50-200	NA	
Acenaphthene-D10	%	85	50-200	82	50-200	79	50-200	NA	
Phenanthrene-D10	1%	83	50-200	82	50-200	81	50-200	NA	
Chrysene-D12	1%	87	50-200	88	50-200	84	50-200	NA NA	
Perylene-D12	1%	88	50-200	94	50-200	85	50-200	NA NA	
Nitrobenzene-D5	%	69	46-120	<i>7</i> 3	46-120	70	46-120	NA NA	
2-Fłuorobiphenyl	1%	64	48-120	68	48-120	61	48-120	NA NA	
p-Terphenyi-d14	%	44	24-136	45	24-136	48	24-136	NA	