Final

Radiological Site Assessment Report

1LT Francis W. Gallagher Memorial U.S. Army Reserve Center (NM005) 1300 West Brown Road, Las Cruces, New Mexico

> Contract No. W912QR-12-D-0027 Delivery Order No. 0003

> > Prepared For:

U.S. Army Corps of Engineers Louisville District

Prepared By:

TerranearPMC

222 Valley Creek Blvd., Suite 210 Exton, PA 19341

December 2014

Final Radiological Site Assessment Report

1LT Francis W. Gallagher Memorial U.S. Army Reserve Center (NM005) 1300 West Brown Road, Las Cruces, New Mexico

kshuoff

Authored By:

Date: 12/31/2014

Kinshuk Shroff, P.E., CHMM

STATEMENT OF INDEPENDENT TECHNICAL REVIEW

TerranearPMC (TPMC) has completed the Final Report on Radiological Site Assessment at the 1LT Francis W. Gallagher Memorial U.S. Army Reserve Center (USARC) (NM005) located in Las Cruces, New Mexico.

Notice is hereby given that an independent technical review has been conducted that is appropriate to the level of risk and complexity inherent in the project. During the independent technical review, compliance with established policy principles and procedures, utilizing justified and valid assumptions, was verified. This included review of data quality objectives; technical assumptions; methods, procedures, and materials to be used; the appropriateness of data used and level of data obtained; and reasonableness of the results, including whether the product meets the customer's needs consistent with law and existing US Army Corps policy.

Significant concerns and the explanation of the resolution are as follows:

• Internal TPMC Technical Review comments are documented in the project file. Changes to the report addressing the comments have been verified by the Project Manager. As noted above, all concerns resulting from independent technical review of the project have been considered.

Toild. Gert

Daniel F. Caputo, P.E., CHP Project Manager, TPMC

Donald Taylor

Date: 12/31/2014

Date: 12/31/2014

Don Taylor Independent Technical Review Team Leader, TPMC TABLE OF CONTENTS

				<u>Page No.</u>
ES 1.	0 EXEC	CUTIVE S	UMMARY	1
	ES 1.	1 INTROL	DUCTION	1
	ES 1.	2 PROJE	CT OVERVIEW	1
	ES 1.	3 FINDIN	GS AND RECOMMENDATIONS	1
1.0	PRO.	JECT BAC	CKGROUND	3
	1.1	SITE HI	STORY, LOCATION AND FEATURES	3
	1.2	AREAS	OF CONCERN	3
2.0	OBJE	ECTIVES	AND RADIOLOGICAL ASSESSMENT METHODOLOGY	5
	2.1	RADIOL	LOGICAL ASSESSMENT METHODOLOGY	5
	2.2	FIELDN	VORK ACTIVITIES	5
		2.2.1 2.2.2	Pre-Mobilization Activities Field Activities	5 7
3.0	SAM	PLE COLI	LECTION AND DATA ANALYSIS	10
	3.1	REMOV	ABLE SMEAR SAMPLING	10
	3.2	SAMPL	E IDENTIFICATION	10
	3.3	SAMPL	E CONTAINERS, PRESERVATION, AND HOLDING TIMES	10
	3.4	ANALY	TICAL METHODS	10
	3.5	QUALIT	TY ASSURANCE/QUALITY CONTROL	10
		3.5.1 3.5.2	Instrument Use / Handling Analytical Data Quality and Review	10 11
4.0	SUM	MARY OF	FIELD INVESTIGATION AND LABORATORY RESULTS	12
	4.1	RESUL	TS SUMMARY	12
	4.2	FIELD I	NVESTIGATION RESULTS	14
		4.2.1 4.2.2	Site Interviews / Visual Inspection Field Measurements	14 14
	4.3	LABOR	ATORY RESULTS	15

5.0	CONCLUS	SIONS	16
6.0	RECOMM	ENDATIONS	17
7.0	REFEREN	CES	18
LIST C	OF FIGURE	S	
Figure	e 1-1	Site Aerial View	4
LIST C	OF TABLES		
Table	2-1	Portable Instrumentation	8

		-
Table 4-1	Summary Results Table	13
Table 4-2	Site Assessment Criteria	14

LIST OF APPENDICES

Appendix A	Historical Review Checklist
Appendix B	Visual Inspection Checklist
Appendix C	Documentation of Survey Approach
Appendix D	Quality Control Data
	D.1 – Operating Range
	D.2 – Instrument Daily Checks
	D.3 – Instrument Calibration Sheets
Appendix E	Survey Record Form
Appendix F	Sample Description Log
Appendix G	Survey Sketches
Appendix H	High Results Narrative
Appendix I	Site Photos
Appendix J	Analytical Results

LIST OF ACRONYMS

ASME	American Society of Mechanical Engineers
cm ²	Square Centimeter
CFR	Code of Federal Regulations
CoC	Chain of Custody
DoD	Department of Defense
DOD	•
DOE DOT	Department of Energy Department of Transportation
	• •
ECP ELAP	Environmental Condition of Property
	Environmental Laboratory Accreditation Program
EPA ft ²	Environmental Protection Agency
GEL	Square Feet
	General Engineering Laboratories
gcpm	Gross counts per minute
hr	Hour International Electrotechnical Commission
IEC ISO	
m^2	International Organization for Standardization Square Meter
	•
MARSSIM NBC	Multi Agency Radiation Survey and Site Investigation Manual
NELAC	Nuclear Biological Chemical
NIST	National Environmental Laboratory Accreditation Conference National Institute of Standards Technology
NQA-1	Nuclear Quality Assurance Level -1
NRC	Nuclear Regulatory Commission
OMS	Organizational Maintenance Shop
PM	Project Manager
POC	Point of Contact
QA	Quality Assurance
QC	Quality Control
QSM	Quality Systems Manual
RADIAC	Radiation Detection, Indication and Computation
RL	Reporting Limit
RSAR	Radiological Site Assessment Report
RSC	Regional Support Command
RSO	Radiation Safety Officer
TPMC	TerranearPMC, LLC
μR	Micro Roentgen
USACE	U.S. Army Corps of Engineers
USARC	U.S. Army Reserve Center
USAR	U.S. Army Reserve
USEPA	U.S. Environmental Protection Agency

ES 1.0 EXECUTIVE SUMMARY

ES 1.1 INTRODUCTION

This radiological site assessment report (RSAR) describes objectives, procedures, and findings of the radiological assessment activities conducted at the 1LT Francis W. Gallagher Memorial U.S. Army Reserve Center (USARC) (NM005) located in Las Cruces, New Mexico, hereafter referred to as the "Gallagher Site" or "the Site".

This report was prepared by TerranearPMC, LLC (TPMC) of Exton, Pennsylvania, to fulfill the requirements of Contract W912QR-12-D-0027, Delivery Order No. 0003 with U.S. Army Corps of Engineers (USACE), Louisville District.

ES 1.2 PROJECT OVERVIEW

Radiological assessment of the Site began with a review of available historical information prior to mobilization in the field. The Site has a low probability for being impacted by residual radioactive materials based on the following three criteria inherent to USARC operations: 1) only small quantities of radioactive materials are used, thus presenting an inherently low risk for release or exposure; 2) the radioactive sources used at these sites are typically sealed sources, thus minimizing release to the environment; and 3) standard Army protocols that require strict management, control, and reporting of radioactive material use. This historical information was used to develop the survey approach and methodology used by the field team in performing the radiological site assessment.

The radiological site assessment activities were performed on October 20, 2014. Upon arrival at the Site, the team performed visual inspections of the facility and conducted interviews with key Site personnel to obtain additional information used to refine the survey approach. Once the survey approach was defined, the team conducted radiological surveys for gamma and alpha/beta radiation using hand-held instruments. In addition, the field team obtained smear/wipe samples at various locations for off-site laboratory analysis to determine the presence of removable alpha, beta, and tritium radioactivity.

ES 1.3 FINDINGS AND RECOMMENDATIONS

The U.S. Army Reserve (USAR) no longer has units stationed at the facility. After personnel interviews, site inspections, and a visual walk down, there is evidence that a small amount of radioactive materials/commodities are used/stored at the Gallagher Site in the form of nuclear, biological and chemical (NBC) detection equipment, Radiation Detection, Indication and Computation (RADIAC) meters, lensatic compasses, and wristwatches. Based on our findings, there is no evidence to suggest that radiological commodities were improperly managed at the Site, or that radiological material was released to the environment.

During the site visit, the survey team performed a comprehensive radiological survey of all locations where radioactive materials may have been used or stored based on historical evidence, interviews, and site inspection findings. The radiological survey included the following samples and data points: thirty (30) direct alpha and beta measurements, thirty (30) gamma radiation exposure rate measurements; ten (10) smear samples for removable alpha /beta radioactivity; and three (3) tritium wet smear samples. All smear samples were sent to an off-site laboratory for analysis. None of the survey results exceeded the most restrictive action

levels as established by the U.S. Nuclear Regulatory Commission (NRC) Regulatory Guide (Reg Guide) 1.86 Table-I limits.

The radiological assessment results documented in this report support the finding that the Gallagher Site does not currently contain residual radioactivity above the Reg Guide 1.86 Table-I limits.

Based on the historical information and supporting survey results, the site may be currently considered radiologically non-impacted, and available for unrestricted use, in accordance with NRC NUREG 1575/EPA 402-R-97-016, Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM), Revision 1 guidance.

1.0 PROJECT BACKGROUND

1.1 SITE HISTORY, LOCATION AND FEATURES

The 1LT Francis W. Gallagher Memorial USARC (hereafter referred to as the "Gallagher Site" or "the Site") is located at 1300 West Brown Road in Las Cruces, New Mexico. The property is an approximately 5.63 acre parcel of land. The parcel is improved with an administration/training building and, Organizational Maintenance Shop (OMS), and Military equipment parking (MEP) area is located west of the OMS and the Administration building. An asphalt publically-owned vehicle (POV) parking area is located east of and adjacent to the Administration Building. The hazardous material buildings southeast of OMS (as shown in aerial image of the site), have been removed from the site. The Gallagher USARC was last occupied by the 281st Transportation Company.

Administration Building

The administration/training building is an approximately 13,342 square foot (ft^2) T shaped building. The building was constructed in 1959. The building contains administration offices, classrooms and storage rooms. An arms vault utilized for storage is located within one of the classrooms, and the door to the arms vault is located within the maintenance bay.

<u>OMS</u>

The OMS is a 5,395 ft², one-story, two-bay building originally constructed in 1959 of concrete block. The interior of the shop has a concrete slab floor, offices, two service bays, and storage areas.

Based on available information, no radiological survey/assessment has been performed at the site.

An aerial image of the Site with an approximate boundary outline is provided in Figure 1-1.

1.2 AREAS OF CONCERN

Site POC interviews indicated NBC detection equipment, RADIAC meters, lensatic compasses, and wristwatches were stored in the administration building at the Gallagher Site. There was no evidence found to suggest that radiological commodities were improperly managed at the Site or that radiological material was released.

Figure 1-1 Site Aerial View

1LT Francis W. Gallagher Memorial U.S. Army Reserve Center (NM005) 1300 West Brown Road, Las Cruces, New Mexico

Note: Red outline shows approximate Site boundary.

2.0 OBJECTIVES AND RADIOLOGICAL ASSESSMENT METHODOLOGY

The overall objectives of the Radiological Site Assessments are 1) to provide sufficient data to demonstrate areas with un-measureable or acceptable levels of radioactive contamination are suitable for release for unrestricted use in accordance with the criteria presented in Section 4.0; and 2) define the nature and extent of any identified contamination or residual radioactive materials. The intent is to provide the stakeholders with sufficient data to support the radiological unrestricted release of the specified facility or to define the nature and extent of any remaining radiological commodities or residual radioactive material.

2.1 RADIOLOGICAL ASSESSMENT METHODOLOGY

The Site assessment was performed in accordance with the MARSSIM guidance document (NRC NUREG 1575) protocols. Survey action levels for alpha and beta radiation levels were obtained from NRC Reg Guide 1.86 Table-I. In accordance with industry practice, the area gamma radiation survey action limit was based on an "indistinguishable from background" determination that is typically 2 to 3 times ambient background radiation levels. The Site did not have a history of radiological releases, accidents, or radioactive waste disposal; and thus the survey was intended to support a MARSSIM non-impacted definition leading to an unrestricted radiological release determination. Survey design was intended to remain flexible to account for any real-time measurements or information that becomes available during the survey process.

For this project, radiological assessment methodology included reviewing available historical and current information; performing visual inspections; conducting interviews; conducting general radiation surveys; obtaining smear and wipe survey samples; laboratory analysis of smear/wipe samples; and evaluation /interpretation of the analytical results. Based on the historical reviews and interviews, no evidence was found to suggest that radiological commodities were improperly managed at the Site, or that radiological material was released. However, based on the fact that the historical record is often incomplete and the potential exists for loss or leakage of radiological commodities, a radiological site assessment is warranted. Based on the existing historical evidence and general USAR knowledge base, the Gallagher Site qualified for the simplified assessment procedure of Appendix B of MARSSIM. This determination is based on the small quantities of mostly sealed radioactive materials likely used and/or stored at the Site, and the fact that no evidence exists for inadvertent loss or release of radioactive materials from the Site.

2.2 FIELDWORK ACTIVITIES

Fieldwork activities may be grouped into two categories:

- 1. Pre-mobilization Activities
- 2. Field Activities

2.2.1 **Pre-Mobilization Activities**

Pre-mobilization activities included those actions required to ensure the team was fully prepared to perform their job tasks upon arrival at the project site.

TPMC separated the pre-mobilization phase into the following activities:

- 1. Historical Due Diligence
- 2. Staffing and Training

- 3. Procurement Actions
- 4. Shipment of Equipment and Supplies

2.2.1.1 Historical Due Diligence

TPMC initiated due diligence review by researching the available site assessment reports for the Site. In addition, available Army literature regarding radioactive commodity use and storage was reviewed (TB 43-0116). The Site review and associated documentation were logged and referenced for use in field activities.

The results of the historical due diligence review are documented in the Historical Review Checklist (Appendix A). The historical documentation does not specifically identify isotopes used at the Site; however, based on our experience, the following isotopes have the highest probability of being present at the Site based on our knowledge of radioactive sources found in the Army commodity inventory: H-3, Ra-226, Sr-90, Cs-137, Th-232, U-238, Pu-239, Ni-63, Pm-147, Co-60, Am-241. Typical types of radioactive commodities used/stored at USARC installations include RADIAC meters; chemical agent detectors; moisture density gauges (engineering units); lensatic compasses; night-vision goggles; radio-luminescent weapons sights and wristwatches; and armored vehicle dials and gauges.

2.2.1.2 Staffing and Training

TPMC delegated full responsibility and authority to the Project Manager (PM) regarding project performance and management of project staff. The PM had direct access to top-level management of TPMC and the subcontractors so that contract, management, and staff needs were immediately met. In addition, key personnel were selected based on their expertise, credentials, relevant experience, communication skills, flexibility, and history/institutional knowledge.

TPMC management, technical support personnel, and field teams worked together as a fully integrated team. The infrastructure to accomplish this was in place and employed existing TPMC corporate processes and procedures. The TPMC corporate Radiation Safety Officer (RSO) conducted initial radiological, and health and safety training for field personnel. Project personnel received awareness training on the following topics:

- General Employee Training
- Hazardous Communications
- Personnel Protective Equipment
- Blood-Borne Pathogens
- Confined Space
- Applicable Site-Required Training, if required
- Radiological Field Procedures and related forms

2.2.1.3 Procurement Actions

TPMC's Procurement Manager controlled the purchase, leasing and subcontracting for material, equipment, and manpower support required for this project. Procured items included, but were not limited to, the following items:

- Ludlum Model 19 MicroR survey meter (area gamma radiation)
- Ludlum Model 2360 scalar/rate meter with data logging capabilities
- Ludlum Model 43-93 Dual alpha/beta scintillation detector

- Instrumentation check sources (thorium-230, technetium-99 and cesium-137)
- Support tools (i.e. hand-tools, masslin mops, flashlights, tape measures, etc)
- Recording equipment/documents
- Communication devices
- Digital cameras with media storage cards
- Personnel Protective Equipment

2.2.1.4 Shipment of Supplies

To expedite field activities while decreasing the amount of equipment and supplies carried by field staff during initial mobilization, TPMC shipped field supplies to the Site location via a common carrier. These materials and supplies included items listed in Section 2.2.1.3.

Radioactive check sources were transported in full compliance with Department of Transportation (DOT) 49 Code of Federal Regulations (CFR) Part 173 as excepted radioactive materials, instrument and article shipments.

2.2.2 Field Activities

Field activities were grouped into the following categories:

- Site Walkdown
 - Interviews with key POCs
 - Visual Inspection of Site
- Documentation of Final Survey Approach
- Radiation Surveys
 - Area gamma radiation measurements
 - Direct alpha/beta measurements (total contamination)
 - Qualitative removable alpha/beta contamination (large area wipes)
 - Quantitative removable alpha/beta contamination (100 square centimeter (cm²) smear samples; dry for alpha /beta and wet for tritium analysis)
- Shipment of Samples to Off-site Laboratory

2.2.2.1 Site Walkdown including Visual Inspection and Interviews with key POCs

Upon arrival on-site, the TPMC Team met with Site personnel to gather background information regarding the Site, and to receive site-specific training/indoctrination as required. The team conducted a visual inspection of the Site to identify any radioactive commodities, radiation use areas, or locations where radiation could be present. Results of the visual inspection survey are provided in Appendix B, and the personnel interviews are documented in Appendix C.

2.2.2.2 Documentation of Survey Approach

The TPMC Field Team used historical due diligence reviews, visual inspections, and interviews to finalize the overall survey strategy ultimately implemented at the site. This Site was considered as one MARSSIM survey unit based on building surface area. The radiological evaluation included an area gamma radiation survey with a MicroR meter (minimum thirty (30) exposure rate measurements) and an alpha, beta, and tritium radiation contamination survey. Although these facilities would typically be considered MARSSIM Class 3 survey units with only judgmental survey and sampling required, the survey team designed the survey using modified Class 2 survey protocols for increased survey coverage – 30 survey points over 1000 m² and 10

sample locations. The Survey Approach Documentation Form for this Site is provided in Appendix C.

2.2.2.3 Radiation Surveys

The Field Team was equipped with the necessary instruments and supplies to perform the radiological assessment surveys in accordance with methodology previously defined. The types of analyses, instrumentation, and detection methods are detailed in Table 2-1 below.

Type of Measurement	Type of Instrument	Detection Method	
Direct measurements for total alpha and beta contamination	Ludlum Model 2360 rate meter with Ludlum Model 43-89 or 43-93 probe	Scintillation/Dual Phosphor	
Wipe tests for removable alpha and beta contamination	Ludlum Model 2360 rate meter with Ludlum Model 43-89 or 43-93 probe	Scintillation/Dual Phosphor	
Low-level gamma radiation exposure rate survey	Ludlum Model 19 MicroR Meter (or equivalent)	Sodium lodide (Nal) Scintillator	

Table 2-1Portable Instrumentation

Prior to taking survey measurements, the team chose a background location(s) as a temporary base of operations to conduct instrument quality control and performance checks. This background or reference area was selected to have a very low probability of being impacted by radioactive materials use or storage, floor surfaces representative of the greater building/Site conditions, and in a location remote from any known or probable radioactive use or storage areas. This background reference area was also the location where smear/wipe samples were counted and instrument performance verified pre and post survey.

The radiological evaluation included an area gamma radiation survey and surveys to detect residual alpha and beta radioactivity. The area gamma radiation survey was performed using a highly sensitive Ludlum MicroR radiation meter (minimum thirty [30] exposure rate measurements) and the survey was focused primarily on identifying radioactive sources or areas of elevated radioactivity. The alpha/beta radiation survey consisting of three components: qualitative removable contamination using large area wipes to identify areas of gross removable contamination; total (fixed plus removal) contamination measurements (thirty [30] direct measurements); and quantitative removable contamination measurements for each survey unit. The alpha/beta radiation survey utilized a Ludlum Model 2360 Scalar/Ratemeter mated to a dual phosphor alpha/beta scintillation probe for direct measurements and field assessment of removable contamination. The qualitative removable contamination was detectable above ambient background levels. If contamination was detected with a large area wipe or a direct measurement, the team expanded their survey area to determine the nature and extent of the contamination.

Since field instruments may not have the required sensitivity to effectively measure the removable contamination at the Reg Guide 1.86 action levels, the field measurements of the dry smear samples are considered qualitative measurements, and the definitive/quantitative results

removable alpha/beta radioactive measurements are provided by the Department of Defense (DoD) ELAP approved off-site laboratory. The field team uses this qualitative field data to identify significantly elevated radiation levels, in order to direct additional survey, and to prevent shipping samples with elevated radioactivity to the laboratory without proper notice. While on-site, direct measurements and dry qualitative smear samples results were compared to applicable Reg Guide 1.86 Table-I Limits. Radiation exposure rate levels were compared to Site ambient background levels. Radiological surveys were documented on a standardized survey form that included information on the instrumentation, background levels, measurement type, survey location (maps and/or photos), and survey results.

Wet and dry smears samples were shipped by overnight express shipment to the selected offsite independent DoD Environmental Laboratory Accreditation Program (ELAP) Accredited laboratory, GEL (located in Charleston, South Carolina), for quantitative radiological (gross alpha, beta, and tritium) analysis. Chain of Custody (CoC) forms were completed for all samples, and samples were shipped by traceable means.

2.2.2.4 Sample Custody and Control

The handling and transport of samples destined for analysis at GEL was coordinated by the Team Lead. As a result, each sample was properly labeled and tracked/controlled on a CoC form provided by the laboratory.

Tritium samples were placed inside plastic vials containing a small quantity of de-ionized water, which in turn were placed inside plastic bags to ensure the smears remained moist during transit per GEL instructions. The alpha/beta smears were placed into a plastic bag and sealed. All sample containers were sealed with a tamper resistant label to ensure no tampering during shipment. The samples were then packaged in a Federal Express (FedEx) overnight pouch with air bills completed for shipment and overnight delivery to the GEL laboratory facility. Since the sample media were not suspected of being a hazardous material per DOT, the shipment was handled as non-regulated sample media.

3.0 SAMPLE COLLECTION AND DATA ANALYSIS

3.1 REMOVABLE SMEAR SAMPLING

A total of thirteen (13) quantitative smear samples (100 cm² smear tests) were taken at the Site. This included ten (10) dry smear samples that were collected and analyzed for removable alpha/beta contamination, and three (3) wet smear samples analyzed for tritium contamination. The following sections provide details of the sample collection and analytical methods.

3.2 SAMPLE IDENTIFICATION

The sample identification (ID) numbers were documented on sample field sheets. Sample ID numbers were used on sample labels or tags, field data sheets and/or logbooks and CoC.

3.3 SAMPLE CONTAINERS, PRESERVATION, AND HOLDING TIMES

Gross alpha/beta smear samples were placed in plastic bags per GEL direction. Tritium smears were placed in plastic vials containing a small quantity of de-ionized water per GEL instructions. Preservation and holding times did not apply to these samples.

3.4 ANALYTICAL METHODS

Samples sent to GEL were analyzed for the following parameters, using the corresponding methods:

- Tritium by Liquid Scintillation: GL-RAD-A-002
- Gross alpha/beta by Gas-Flow Proportional Counting: EPA 900.0/SW846 9310/SM 7110B Modified

3.5 QUALITY ASSURANCE/QUALITY CONTROL

Quality Control (QC) was maintained on this project at all stages including portable instrument use / handling, sample integrity, and analytical laboratory data. Requested laboratory reporting limits (RL) were one tenth (1/10) of the action limits in Reg Guide 1.86 Table-I.

3.5.1 Instrument Use / Handling

The team was equipped with hand-held, portable survey instruments, each of which was calibrated by a National Institute of Standards & Technology (NIST) certified off-site facility. Copies of the calibration certificates used for this project are included as Appendix D.3, "Instrument Calibration Sheets". In addition, each day on-site the team performed Instrument Checks (pre- and post-survey) to ensure the instruments were operating within their established ranges.

As data was collected by the field team, the Team Lead provided oversight with regard to the survey methods used, as well as the data sheets generated during execution of the field work. Essentially the Team Lead functioned as first-line reviewer for the project.

3.5.2 Analytical Data Quality and Review

GEL Laboratories has a mature Quality Assurance (QA) program that has been audited and certified by recognized organizations including: DoD Quality Systems Manual (QSM) ELAP, National Environmental Laboratory Accreditation Conference (NELAC), American Society of Mechanical Engineers Nuclear Quality Assurance, Level -1 (ASME/NQA-1), and International Organization for Standardization/International Electrotechnical Commission (ISO/IEC) Guide 17025. The high standards built as part of GEL's QA program were directly applied to the handling, analysis, and data reporting associated with the smear samples generated by this project.

In addition, TPMC personnel routinely reviewed all data packages to ensure the completeness and accuracy of each of the sample reports. This review was performed with the goal to ensure that the sample results received accurately and completely matched the parameters of the Site's sample locations.

4.0 SUMMARY OF FIELD INVESTIGATION AND LABORATORY RESULTS

This section provides a summary of field and laboratory observations, results, data, and interpretation results associated with the radiological site assessment. Summarized results of both field and laboratory activities are provided in Table 4-1. This is followed by a brief discussion of the supporting data obtained during this project.

4.1 RESULTS SUMMARY

Table 4-1 provides a summary record of the data obtained in the field along with the corresponding analytical results from the GEL off-site analytical laboratory. As presented in the table, all survey data and analytical results were either less than the ambient background radiation levels, less than instrument detection limits, or below the conservative NRC Reg Guide 1.86 Table-I limits. The detailed survey results are provided in Appendix E, and sample location details are provided in Appendix F. A survey sketch identifying sample locations is provided in Appendix G.

(Space intentionally left blank)

Table 4-1	
Summary Results	Table

		Co	on		Exposure Rate			
Survey Location Number	Direct	t Field	Rem	ovable / S	Surface Contact	One meter Above Surface		
	(dpm / 1	L00 cm²)	Lab	(dpm /100	(uD/br)			
	α	β	α	β	Tritium	(µR/hr)	(µR/hr)	
Location / Area :1LT Francis W. Gallagher Memorial USARC (NM005) : SU1								
1	<bkg< td=""><td><bkg< td=""><td>ND</td><td>ND</td><td>ND</td><td>17.0</td><td>16.5</td></bkg<></td></bkg<>	<bkg< td=""><td>ND</td><td>ND</td><td>ND</td><td>17.0</td><td>16.5</td></bkg<>	ND	ND	ND	17.0	16.5	
2	<bkg< td=""><td><bkg< td=""><td>ND</td><td>ND</td><td>-</td><td>15.5</td><td>16.0</td></bkg<></td></bkg<>	<bkg< td=""><td>ND</td><td>ND</td><td>-</td><td>15.5</td><td>16.0</td></bkg<>	ND	ND	-	15.5	16.0	
3	<bkg< td=""><td><bkg< td=""><td>-</td><td>-</td><td>-</td><td>17.0</td><td>17.0</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>17.0</td><td>17.0</td></bkg<>	-	-	-	17.0	17.0	
4	<bkg< td=""><td><bkg< td=""><td>-</td><td>-</td><td>-</td><td>15.5</td><td>16.0</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>15.5</td><td>16.0</td></bkg<>	-	-	-	15.5	16.0	
5	<bkg< td=""><td><bkg< td=""><td>-</td><td>-</td><td>-</td><td>18.0</td><td>17.0</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>18.0</td><td>17.0</td></bkg<>	-	-	-	18.0	17.0	
6	<bkg< td=""><td><bkg< td=""><td>0.943</td><td>ND</td><td>-</td><td>15.5</td><td>15.0</td></bkg<></td></bkg<>	<bkg< td=""><td>0.943</td><td>ND</td><td>-</td><td>15.5</td><td>15.0</td></bkg<>	0.943	ND	-	15.5	15.0	
7	<bkg< td=""><td><bkg< td=""><td>-</td><td>-</td><td>-</td><td>17.0</td><td>16.0</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>17.0</td><td>16.0</td></bkg<>	-	-	-	17.0	16.0	
8	<bkg< td=""><td><bkg< td=""><td>-</td><td>-</td><td>-</td><td>16.0</td><td>15.0</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>16.0</td><td>15.0</td></bkg<>	-	-	-	16.0	15.0	
9	<bkg< td=""><td><bkg< td=""><td>-</td><td>-</td><td>-</td><td>17.0</td><td>16.5</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>17.0</td><td>16.5</td></bkg<>	-	-	-	17.0	16.5	
10	<bkg< td=""><td><bkg< td=""><td>ND</td><td colspan="2">ND ND -</td><td>16.0</td><td>16.0</td></bkg<></td></bkg<>	<bkg< td=""><td>ND</td><td colspan="2">ND ND -</td><td>16.0</td><td>16.0</td></bkg<>	ND	ND ND -		16.0	16.0	
11	<bkg< td=""><td>445.8</td><td>ND</td><td>0.737</td><td>ND</td><td>24.0</td><td>26.0</td></bkg<>	445.8	ND	0.737	ND	24.0	26.0	
12	<bkg< td=""><td>442.5</td><td colspan="2">ND ND</td><td>-</td><td>26.0</td><td>26.0</td></bkg<>	442.5	ND ND		-	26.0	26.0	
13	<bkg< td=""><td>4.0</td><td>ND</td><td colspan="2">ND ND</td><td>19.0</td><td>18.5</td></bkg<>	4.0	ND	ND ND		19.0	18.5	
14	<bkg< td=""><td>4.0</td><td colspan="2"></td><td>-</td><td>17.0</td><td>16.0</td></bkg<>	4.0			-	17.0	16.0	
15	<bkg< td=""><td>277.6</td><td>ND</td><td colspan="2">ND ND -</td><td>19.0</td><td>15.5</td></bkg<>	277.6	ND	ND ND -		19.0	15.5	
16	<bkg< td=""><td><bkg< td=""><td colspan="2">ND ND ND</td><td>ND</td><td>14.5</td><td>12.5</td></bkg<></td></bkg<>	<bkg< td=""><td colspan="2">ND ND ND</td><td>ND</td><td>14.5</td><td>12.5</td></bkg<>	ND ND ND		ND	14.5	12.5	
17	<bkg< td=""><td><bkg< td=""><td>-</td><td>-</td><td>-</td><td>11.0</td><td>11.0</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>11.0</td><td>11.0</td></bkg<>	-	-	-	11.0	11.0	
18	<bkg< td=""><td>30.3</td><td>-</td><td>-</td><td>-</td><td>12.5</td><td>13.0</td></bkg<>	30.3	-	-	-	12.5	13.0	
19	<bkg< td=""><td><bkg< td=""><td>-</td><td>-</td><td>-</td><td>11.0</td><td>11.0</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>11.0</td><td>11.0</td></bkg<>	-	-	-	11.0	11.0	
20	<bkg< td=""><td><bkg< td=""><td>-</td><td>-</td><td>-</td><td>17.0</td><td>16.0</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>17.0</td><td>16.0</td></bkg<>	-	-	-	17.0	16.0	
21	<bkg< td=""><td><bkg< td=""><td>-</td><td>-</td><td>-</td><td>15.0</td><td>14.0</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>15.0</td><td>14.0</td></bkg<>	-	-	-	15.0	14.0	
22	<bkg< td=""><td><bkg< td=""><td>-</td><td>-</td><td>-</td><td>17.0</td><td>17.0</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>17.0</td><td>17.0</td></bkg<>	-	-	-	17.0	17.0	
23	<bkg< td=""><td>231.5</td><td>-</td><td>-</td><td>-</td><td>15.5</td><td>16.0</td></bkg<>	231.5	-	-	-	15.5	16.0	
24	<bkg< td=""><td>280.9</td><td>ND</td><td>1.25</td><td>-</td><td>17.0</td><td>16.0</td></bkg<>	280.9	ND	1.25	-	17.0	16.0	
25	<bkg< td=""><td>152.3</td><td>-</td><td>-</td><td>-</td><td>16.0</td><td>15.5</td></bkg<>	152.3	-	-	-	16.0	15.5	
26	<bkg< td=""><td><bkg< td=""><td colspan="2"></td><td>_</td><td>14.5</td><td>14.5</td></bkg<></td></bkg<>	<bkg< td=""><td colspan="2"></td><td>_</td><td>14.5</td><td>14.5</td></bkg<>			_	14.5	14.5	
27	<bkg< td=""><td><bkg< td=""><td>-</td><td>-</td><td>_</td><td>9.0</td><td>9.5</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>-</td><td>_</td><td>9.0</td><td>9.5</td></bkg<>	-	-	_	9.0	9.5	
28	<bkg< td=""><td>178.7</td><td>-</td><td>-</td><td>-</td><td>16.0</td><td>15.0</td></bkg<>	178.7	-	-	-	16.0	15.0	
29	<bkg< td=""><td>307.3</td><td>-</td><td>_</td><td>_</td><td>20.0</td><td>19.0</td></bkg<>	307.3	-	_	_	20.0	19.0	
30	<bkg< td=""><td>168.8</td><td>-</td><td>-</td><td>-</td><td>19.0</td><td>18.5</td></bkg<>	168.8	-	-	-	19.0	18.5	
Notes:				1	1			

ND - Analyte was analyzed for, but not detected above the laboratory detection limit. Detection limit is lower than the site assessment criteria shown in Table 4-2. Laboratory data package is provided in Appendix J. BKG - Background							
dpm – disintegrations per hour	dpm – disintegrations per minute, cm^2 – square centimeters, μR – micro-Roentgen, hr - hour						
S	Site-specific Background Measurements						
Location/Area	Location/Area α (dpm / 100 cm ²) β (dpm / 100 cm ²) γ(μR/hr)						
1LT Francis W. Gallagher Memorial USARC (NM005)	42.8	915.9	15.2				

The data in Table 4-1 was compared to the site assessment criteria which was extracted from Reg Guide 1.86 Table-I. The Reg Guide 1.86 Table-I criteria are summarized in Table 4-2 and for this survey; all measurements were below this established criteria.

Table 4-2Site Assessment Criteria

	Direct Measurements	Removable / Smear Measurements	Ambient Exposure Rates		
Alpha (dpm/100 cm ²)	100	20	-		
Beta (dpm/100 cm ²)	1000	200	-		
Tritium (dpm/100 cm ²)	5000	1000	-		
Gamma (µR/hr)	-	-	> 2 x Average Background		
Note: Alpha, beta, and tritium values extracted from NRC Regulatory Guide 1.86 Table-I dpm – disintegrations per minute cm ² – square centimeters µR/hr – micro-Roentgen per hour					

4.2 FIELD INVESTIGATION RESULTS

4.2.1 Site Interviews / Visual Inspection

Visual inspections and site POC interviews indicated that some low-level radioactive commodities were used and stored in the Administration building. The result of the visual inspection is documented in Appendix B, "Visual Inspection / Site Survey Checklist".

In addition to the visual inspection, the Team Lead conducted an interview with on-site POC. The results of this interview are recorded in the Survey Approach Documentation Form provided in Appendix C. The interview resulted in no areas requiring additional survey or investigation.

4.2.2 Field Measurements

All field measurements obtained by the survey team are included in Appendix E of this report. The following data was recorded:

- Total (fixed and removable) alpha (cpm and dpm/100 cm²)
- Total (fixed and removable) beta (cpm and dpm/100 cm²)
- Removable / Smear (cpm/100 cm² and dpm/100 cm²)
 - Note: This was a qualitative measurement performed and used by field personnel that is superseded by analytical data received by GEL Laboratories.
- Removable Large Area Wipes (cpm)
- Area gamma radiation exposure rate measurements on contact and at one meter vertically off the floor (μR/hr)

The survey record tool was set up to convert "cpm" values to "dpm" using instrument specific calibration sheets, enabling the Field Team to see in real-time the corresponding field measurements in disintegrations per minute (dpm) for direct comparison with the Reg Guide 1.86 Table-I criteria (Table 4-2).

In addition to the Survey Record, the Sample Description Log is included in Appendix F. This document provides supplementary descriptions of the survey locations in addition to the information provided in the Survey Record. Survey Sketches (Appendix G) provide pictorial representations of the specific locations where direct measurements and smear samples were taken.

All survey results were found to be indicative of background radiation levels and were less than Reg Guide 1.86 Table-I limits.

4.3 LABORATORY RESULTS

All laboratory results are provided in Appendix J. In addition to the analytical results, this appendix includes: Certificate of Analysis Report, QC Summary, copy of CoC, Sample Receipt and Review Form, and a listing of GEL's current certifications.

These results, received from GEL Laboratories, support the initial field team findings that there are no areas displaying radioactivity in excess of the respective actions levels. All sample results were less than the most restrictive Reg Guide 1.86 removable contamination limits of 20 dpm/100 cm² alpha, 200 dpm/100 cm² beta, or 1000 dpm/100 cm² tritium. As a result, no additional investigation was warranted.

5.0 CONCLUSIONS

All data collected and survey results support the conclusion that there is no evidence of radiological contamination or radioactive material present at the Gallagher Site. In accordance with the MARSSIM guidance document and based on the data presented in this report, the Gallagher Site can be considered radiologically non-impacted and available for unrestricted use with respect to radiological hazards.

6.0 RECOMMENDATIONS

TPMC recommends using the results of this Site Radiological Assessment as evidence that the Gallagher Site is free of residual radiological contamination and unsecured radioactive material. Thus the Site can be considered radiologically non-impacted and available for unrestricted use relative to radiological hazards.

7.0 REFERENCES

DoD, DOE, USEPA, and Nuclear Regulatory Commission (NRC), 2000, *Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM), NUREG-1575, Rev.1, EPA 402-R-97-016, Rev. 1, DOE/EH-0624, Rev. 1*, August.

ECP, 2013, Final Environmental Condition of Property (ECP) Report for Gallagher Memorial USARC, Las Cruces, NM, Nov 18, 2013

TB 43-0116 "Identification of Radioactive Items in the Army"

U.S. Atomic Energy Commission Regulatory Guide, NRC Reg Guide 1.86, *Termination of Operating Licenses for Nuclear Reactors*, June 1974

APPENDIX A HISTORICAL REVIEW CHECKLIST

SITE HISTORICAL DATA REVIEW

Validation of MARSSIM Appendix B Approach

Site: 1LT Francis W. Gallagher Memorial U.S. Army Reserve Center (NM005)

Team Lead / Reviewer: Joe Green Date revie

Date reviewed: 10/17/14

Documents reviewed:

All historical documents provided by 63rd Regional Support Command (RSC) Point of Contact (POC) were reviewed to guide radiological assessment at the site.

Site summary:

The 1LT Francis W. Gallagher Memorial USARC (hereafter referred to as the "Gallagher Site" or "the Site") is located at 1300 West Brown Road in Las Cruces, New Mexico. The property is an approximately 5.63 acre parcel of land. The parcel is improved with an administration/training building and, Organizational Maintenance Shop (OMS), and Military equipment parking (MEP) area is located west of the OMS and the Administration building. An asphalt publically-owned vehicle (POV) parking area is located east of and adjacent to the Administration Building. The hazardous material buildings southeast of OMS (as shown in aerial image of the site), have been removed from the site. The Gallagher USARC was last occupied by the 281st Transportation Company.

Administration Building

The administration/training building is an approximately 13,342 square foot (ft²) T shaped building. The building was constructed in 1959. The building contains administration offices, classrooms and storage rooms. An arms vault utilized for storage is located within one of the classrooms, and the door to the arms vault is located within the maintenance bay.

<u>OMS</u>

The OMS is a 5,395 ft², one-story, two-bay building originally constructed in 1959 of concrete block. The interior of the shop has a concrete slab floor, offices, two service bays, and storage areas.

Based on available information, no radiological survey/assessment has been performed at the site.

Potential for radioactive commodity use, handling, or storage:

As documented in Section 2.2.3.15 of the ECP, "Interviews with onsite personnel confirmed the presence of chemical agent detectors, IM-93s, radiological meters, lensatic compasses, and wristwatches. These items were secured in a caged storage area inside the USAR Center Administration Building". There is no evidence to suggest that any radiological commodities were ever improperly used or stored at the site or that any radioactive materials were released to the environment.

Findings, if any:

No specific radiological concerns exist.

Conclusion:

There is no evidence to suggest that radioactive commodities were ever improperly managed at the site, or that any radionuclides within seal-source items were ever released. Therefore, the site qualifies for the simplified assessment procedure of Appendix B of MARSSIM.

References:

ECP, 2013, Final Environmental Condition of Property (ECP) Report for Gallagher Memorial USARC, Las Cruces, NM, Nov 18, 2013

APPENDIX B VISUAL INSPECTION CHECKLIST

VISUAL INSPECTION CHECKLIST

Site Location:1LT Francis W. Gallagher Memorial U.S. Army Reserve Center (NM005)Date:10/20/14Team Lead: Joe Green

Item #	Areas for Review	YES	ON	OBSERVED	NOT	N/A	COMMENTS
	Key Indicators to loc	ok i	for	•			
1	Stain spots in vault, storage, supply room. Could be indication of an instrument or equipment that broke at some point in the past				x		
2	Presence of stored liquids		х				
3	Signs that may have radioactive material. (Exit Signs, smoke detector etc.)		x				
4	Any areas marked, or previously marked, with RAD signs		x				
5	Identified any radioactive commodities? (What are they, condition, etc.)		х				
6	Problems accessing site? (Can't contact POC, scheduling conflict, etc.)		х				
7	Any areas at site not accessible? (Locked Connex, area, storage cabinet, etc.)		х	,			
8	Any radioactive signage? (Is the radioactive commodity there or is it historical in nature)	x					
Area	as with higher potential of radiological components						
9	Rooms that may have previously stored ammunition or explosives (Could be an indication of potential DU)	x					Vault
10	Medical rooms where x-ray equipment was stored or used – typically only radioactive signage/no RAM		x				
11	Areas that CBRN detecting equipment may have been stored (Storage, supply, vault)	x					Caged Storage Area in administrative building (See Survey Sketch)
12	Maintenance areas, especially where radioactive components/commodities may have managed		x				
13	Areas where Engineer/Construction units used/stored soil moisture/density gauges		x				
14	Small arms storage areas (Indication of radio-luminescent aiming sights or night vision equipment use and storage)	х					Vault
15	Depleted Uranium munitions use or storage NOTE: these items are only used in large caliber guns such as Bradley Fighting Vehicle, Mini Gun Systems, and Main Battle Tanks. Normally not found at USARCs.		x	,			

APPENDIX C DOCUMENTATION OF SURVEY APPROACH

Survey Approach Documentation Form

Site Location: 1LT Francis W. Gallagher Memorial U.S. Army Reserve Center (NM005)

Date: 10/20/14 Team Lead: Joe Green

Personnel Interviewed:

Chuck Eichensehr, Facility Manager	Mr. Eichensehr provided access to facility. He provided overview of the facility and showed the locations of vault and radiological commodities storage area. He was not aware of any radiological spill or incident at the site.				
Mike Halbert, Area Facility Operations Specialist	Mr. Halbert assisted with access to the facility. He was not aware of any radiological incident or mismanagement of radiological commodities.				

Narrative Documenting Preliminary Survey Approach:

In designing the survey, the survey team initially assume that the site has a low probability for being impacted by residual radioactive materials based on the following three criteria inherent to Army Reserve operations: 1) only small quantities of radioactive materials were used thus presenting an inherently low risk for release or exposure; 2) the radioactive sources used at these sites are typically sealed sources thus minimizing release to the environment; and 3) standard Army protocols that require strict management, control, and reporting of radioactive material use. Based on the low probability of residual radioactive materials remaining at Army Reserve sites, initial survey approach is to follow the MARSSIM simplified survey approach as outlined in MARSSIM Appendix B. This simplified survey approach allows use of a more streamlined and flexible survey strategy incorporating historical process knowledge and data with radiation survey results to determine whether the site is impacted by residual radioactive material above the Nuclear Regulatory Commission (NRC) Regulatory Guide (Reg Guide) 1.86 Table-I limits.

After review of the related site historical documents, personnel interviews, site inspections, visual walk downs, and radiological surveys, there is evidence that a small amount of radioactive materials/commodities was used or stored at the Site in the form of NBC detection equipment, RADIAC meters, lensatic compasses, and wristwatches.

This site will be considered as one survey unit. The radiological evaluation will include an area radiation survey with a MicroR meter (minimum thirty (30) exposure rate measurements) and a contamination survey consisting of three components for each survey unit:

- Fixed contamination [minimum thirty (30) direct measurements]
- Qualitative removable contamination (large area wipes, as appropriate)
- Quantitative removable contamination [100 cm² smear tests; minimum ten (10) dry wipes for gross alpha/beta and minimum three (3) wet smears for Tritium].

Before collecting the samples; the survey team will perform exposure dose measurement readings. Biased sample locations were then determined based on the exposure dose measurements if required. Systematic random samples will then be collected so as to obtain

good distribution of sampling location throughout the site. The administrative areas and offices will be provided only a few sample/survey locations due to the reduced probability of radioactive materials storage or use in these areas.

Amended Survey Approach as Needed During Real-Time Survey Findings:

Not required.

APPENDIX D QUALITY CONTROL DATA

D.1 – Operating Range

D.2 – Instrument Daily Checks

D.3 – Instrument Calibration Sheets

Initial Alpha, Beta-Gamma and Exposure Rate Operating Range

Team JG/AM

		1LT Francis W. Galla	agher Memor	ial USARC (NM005)			00//10			
				BETA Instrument						
Date	10/20/14	Technician / Initials	JG	Date	10/20/14	Technician / Initials	JG			
Instrument Model #	Ludlum 2360	Detector Model #	Ludlum 43-93	Instrument Model #	Ludlum 2360	Detector Model #	Ludlum 43-93			
Instrument Serial #	287657	Detector Serial #	PR323034	Instrument Serial #	287657	Detector Serial #	PR323034			
Instrument Cal Due	02/16/15	Detector Cal Due	02/16/15	Instrument Cal Due	02/16/15	Detector Cal Due	02/16/15			
Source Isotope	Po-210	Det Active Area (cm ²)	100	Source Isotope	Sr-90	Det Active Area (cm ²)	100			
Source ID #	5-2013	Source Activity (µCi)	0.1	Source ID #	4-2013	Source Activity (µCi)	0.1			
Background cpm 1	10	Source gcpm 1	2642	Background cpm 1	277	Source gcpm 1	74220			
Background cpm 2	6	Source gcpm 2	2579	Background cpm 2	265	Source gcpm 2	73832			
Background cpm 3	6	Source gcpm 3	2544	Background cpm 3	295	Source gcpm 3	74088			
Background cpm 4	7	Source gcpm 4	2636	Background cpm 4	319	Source gcpm 4	73903			
Background cpm 5	6	Source gcpm 5	2565	Background cpm 5	305	Source gcpm 5	74578			
Background cpm 6	10	Source gcpm 6	2630	Background cpm 6	277	Source gcpm 6	74371			
Background cpm 7	19	Source gcpm 7	2571	Background cpm 7	273	Source gcpm 7	73434			
Background cpm 8	10	Source gcpm 8	2581	Background cpm 8	240	Source gcpm 8	73768			
Background cpm 9	13	Source gcpm 9	2607	Background cpm 9	250	Source gcpm 9	73784			
Background cpm 10	12	Source gcpm 10	2550	Background cpm 10	277	Source gcpm 10	73679			
Average Bckgrd cpm	9.9	Average Source gcpm	2,590.5	Average Bckgrd cpm	277.8	Average Source gcpm	73,965.7			
Average Bckgrd dpm/100 cm ²	42.8			Average Bckgrd dpm/100 cm ²	915.9					
Detector Efficiency	0.2315	Lower Range (gcpm) -20%	2072	Detector Efficiency	0.3033	Lower Range (gcpm) -20%	59173			
Cable Length (ft)	3	Upper Range (gcpm) +20%	3109	Cable Length (ft)	3	Upper Range (gcpm) +20%	88759			
Direct Alpha Action Level (gcpm)	33.05			Direct Beta Action Level (gcpm)	581.1					
		Rate Instrument	10							
Date	10/20/14	Technician / Initials	JG							
Instrument Model #	Ludlum 19	Source Isotope	Cs-137							
Instrument Serial #	296424	Source ID #	292							
Instrument Cal Due	02/13/15	Source Activity (µCi)	1.00							
Background µR/hr 1	15	Source µR/hr 1	385							
Background µR/hr 2	15.5	Source µR/hr 2	390							
Background µR/hr 3	14	Source µR/hr 3	395							
Background µR/hr 4	14.5	Source µR/hr 4	395							
Background µR/hr 5	16.5	Source µR/hr 5	390							
Background μR/hr 6	16	Source µR/hr 6	390							
Background µR/hr 7	16.5	Source µR/hr 7	390							
Background μR/hr 8	15	Source µR/hr 8	390							
Background µR/hr 9	14	Source µR/hr 9	390							
Background µR/hr 10	15	Source µR/hr 10	395							
Average Bkg μR/hr	15.2	Average Source µR/hr	391.0							

312.8 469.2

Lower Range (µR/hr) -20%

Upper Range (µR/hr) +20%

DAILY INSTRUMENT PERFORMANCE CHECK LOG

Team No. : JG/AM

1LT Francis W. Gallagher Memorial USARC (NM005)

					<u> </u>		•				
	Rate Meter acturer	Ludi	um	Model #	Ludlum 19		Serial #	296424		Cal Due Date	2/13/15
	r / Probe acturer	Ludi	um	Model #	Ludlum 43-93		Serial #	PR323034		Cal Due Date	2/16/15
	nt / Meter acturer	Ludi	um	Model #	Ludlum 2360		Serial #	287657]	Cal Due Date	2/16/15
Alpha	Source #	5-2013	Isotope	Po-2	210	Activity (µCi)	0.1		± 20% Range	2072-31	09
Beta	Source #	4-2013	Isotope	Sr-9	90	Activity (µCi)	0.1		± 20% Range	59173-88 [°]	759
Gamma	Source #	292	Isotope	Cs-1	37	Activity (µCi)	1.00		± 20% Range	313-46	9
Detector/ P	robe Efficienc	cy(a):	0.231	15	Detector/Probe	 Efficiency (β) :	0.3033	3			

Date	Time	Instrument Physical Check Sat	Instrument & Detector in Calibration	Battery Check Sat	Background Alpha	Background Beta	Background Gamma	Source Alpha	Source Beta	Source Gamma	Response Chk – Init	Response Chk – End	Response Check
	Pre / Post	(Y / N)	(Y / N)	(Y / N)	(cpm)	(cpm)	(μR/hr)	(cpm)	(cpm)	(μR/hr)	Net Value (cpm, μR)	Net Value (cpm, μR)	Technic. Initials
10/20/14	9:00	Y	Y	Y	9.9	277.8	15.2	2590.5	73965.7	391	ok	ok	JG
10/20/14	13:35	Y	Y	Y	16.0	283.0	20.0	2699.0	73899.0	400	ok	ok	JG

Alpha and beta background and source counts are measured for one minute

Designer and Manufacturer of Scientific and Industrial Instruments	CERTIFICATE OF CALIBRATION	LUDLUM MEASUREMENTS, INC. 501 Oak Street 10744 Dutchtown Road 325-235-5494 865-392-4601 Sweetwater, TX 79556, U.S.A. Knoxville, TN 37932, U.S.A.			
CUSTOMER TERRANEAR PMC LLC		ORDER NO. 20252912/411311			
Mfg. Ludlum Measurements, Inc.	Model2360	Serial No. 287657			
Mfg. Ludlum Measurements, Inc.	Model 43-93	Serial No. PR 323018			
Cal. Date 23-Sep-14 Ca	al Due Date23-Sep-15	Cal. Interval <u>1 Year</u> Meterface <u>202-855</u>			
Check mark vapplies to applicable instr. and/or	detector IAW mfg. spec. T. 73	_ °F RH32 % Alt692.8 mm Hg			
New Instrument Instrument Received	Within Toler. +-10% 10-20% Out of	f Tol. 🔄 Requiring Repair 🔄 Other-See comments			
✓ Mechanical ck. ✓ Meter Z □ F/S Resp. ck ✓ Reset c ✓ Audio ck. ✓ Alarm S ✓ Calibrated in accordance with LMI SOP 14.8 ✓ Instrument Volt Set 750 V	k. Setting ck. ✓ Window Operation ✓ Batt. ck. (Min. Volt	act Input Sens. Linearity Geotropism)22_VDC ☐ RS-232 Port OK Jance with LMI SOP 14.9 rev 02/07/97.			
	500 / 502 V Ref./Inst.	2000 12004 V			
Firmware Version:39010 N24Alpha Threshold:120 muBeta Threshold:3.5 muBeta Window:30 mu	(EEPROM Se User Time: Alpha Alarm: Beta Alarm:				
Overload <u>Set to Simulate 1</u> Instrument calibrated with a <u>394</u> ca	ble. Model 2360 D				
High voltage set with detector NoT Co.	weiten. Calibration Da				
COMMENTS: Po-210 ~0.1µCi check source reads ~3kcpm Sr-90 ~0.1µCi check source reads ~80kcpm					

Po-210 ~0.1µCi check source reads ~3kcpm with source placed on screen of 43-93 (SN:PR323034) and 2360 in alpha position. Sr-90 ~0.1µCi check source reads ~80kcpm with source placed on screen of 43-93 (SN:PR323034) and 2360 beta position. Po-210 ~0.1µCi check source reads ~3kcpm with source placed on screen of 43-93 (SN:PR323018) and 2360 in alpha position. Sr-90 ~0.1µCi check source reads ~80kcpm with source placed on screen of 43-93 (SN:PR323018) and 2360 in alpha position. Gamma Calibration: GM detectors positioned perpendicular to source except for M 44-9 in which the front of probe faces source.

		REF	ERENCE	IN	STRUMENT R		INSTRUM		
	RANGE/MULTIPL	LIER CAL. POINT		"A	"AS FOUND READING" 400		METER READING*		
	x1000		400k cpm						
	x1000	100k cj			100			00	
	x100		40k cpm 10k cpm					00	
	x100						10		
	x10	4k cj	om		400		40		
	x10	1k c			100		10		
	x1	400 cj	om		400		40		
	x1	100 cj	om		100		10	0	
	*Uncertainty within ± 10% 0	C.F. within ± 20%				ALL	Range(s) Cal	ibrated Electronically	
	REFERENCE	INSTRUMENT	INSTRUMENT		REFERENCE	INST	RUMENT	INSTRUMENT	
	CAL. POINT	RECEIVED	METER READING*		CAL. POINT	REC	EIVED	METER READING	*
Digital Readout	400kcpm 40kcpm 4kcpm 400cpm	40026(0) 4002 400 400	40026 (0) 4002 400 400 400	Log Scale					
	40cpm	_ 4)	_ 4						
other Internat	urements, Inc. certifies that the abo ional Standards Organization mem on system conforms to the requirem	bers, or have been derived f	om accepted values of natural	o the Nation physical co	nal Institute of Standards nstants or have been der	ived by the ratio	type of calibration	on facilities of techniques. ition License No. LO-1963	
Reference	e Instruments and/or Source	es: Cs-137 S/N: 059	2171CP 2261CP 72	0 734	781 1131	1616 🗌 16	596 🗌 1909 🗌] 1916CP 5105 571	700
5719	CO 60646 70897]73410 🗌 E552 🗌 G1	12 🗌 M565 🗌 S-394 [T10081 T1008	2 Neutron An	n-241 Be S/N:] T-304 Ra-226 S/N:	Y982
🖌 Alp	bha S/N Pu239 S	SN:7053	Beta S/NTc99SN	:5280,Sr	Y90SN:5281	Other			
🖌 m	500 S/N 19056	6	Oscilloscope S/N		[Multimete	er S/N	86250390	_
Calibrate	ed By:	m th	e-		Date	23-50	Pt.14		
Reviewe	ed By:	· El har			Date	245	ep 14		
	cate shall not be reproduced excep 2S 05/19/2014 Page _	ot in full, without the written a	oproval of Ludlum Measuremer	nts, Inc.	AC			i-Pot) and Continuity Test	_

Designer and Manufacturer
of
Scientific and Industrial
Instruments

LUDLUW WEASUR	EMENIS, INC.
501 Oak Street	10744 Dutchtown Road
325-235-5494	865-392-4601
Sweetwater, TX 79556, U.S.A.	Knoxville, TN 37932, U.S.A.

Bench Test Data For Detector

Detector	43-93 Serial No. 123018			Order #.	20252912/411311		
Customer	TERRANEAR	PMC LLC		Alpha Input Sensitivity	120	mV	
Counter	2360	Serial No. 287	120				
oounter _	2000		551	Beta Input Sensitivity	3.5	mV	
Count Time	1Minute			Beta Window	30	mV	
Other				Distance Source to Detector	Surface		

1.0.1			Isotope	Pu239	Isotope _	TC99	Isotope	51490
High Voltage	Back	kground	Size	24900pm	Size	93200 pm	Size	94422pm
voltage	Alpha	Beta	Alpha	Beta	Alpha	Beta	Alpha	Beta
_700	0	106	5324	257	25	10/81	1	20068
725	1	137	5841	260	25	14593	0	26550
_ 750	0	229	6104	301	27	17744	0	30736
775	0	290	6176	384	28	20684	0	34588
800	1	341	6102	507	31	24261	4	34795
				4				
		1						

Gas Proportional detector count rate decreased

 \leq 10% after 15 hour static test using 39" cable.

Gas proportional detector count rate decreased

 $\leq~$ 10% after 5 hour static test using 39" cable and alpha/beta counter.

Signature

 $\frac{2}{3} Page 2 of 3$ • Serving The Nuclear Industry Since 1962

Date 23- Sept. 14

4B 02/26/2013

Designer and Manufacturer of Scientific and Industrial Instruments

LUDLUM MEASUREMENTS, INC. 501 Oak Street 10744 Dutchtown Road 325-235-5494 865-392-4601 Sweetwater, TX 79556, U.S.A. Knoxville, TN 37932, U.S.A.

Bench Test Data For Detector

Detector	43-93	Serial N	o. PR 323034	Order #	20252912/41	1311
Customer	TERRANEAR F	PMC LLC				1011
Counter	2360	Queriel NI	262122	Alpha Input Sensitivity	120	mV
		_ Serial No	287657	Beta Input Sensitivity	3.5	mV
Count Time	1Minute			Beta Window	30	mV
Other				Distance Source to Detector	Surface	111V

High Voltage	Back	kground	Isotope Size	Pu239 24900pm	Isotope _ Size _	7c99 93200000	Isotope Size	51490
	Alpha	Beta	Alpha	Beta	Alpha	Beta	Alpha	Bet
725	0	153	5619	304	16	12655	2	23999
750	0	201	5830	306	26	15388	a	28843
775	0	267	6073	389	20	18996	0	32466
800	1	320	6060	462	18	21767	1	34311
		-						
		1 						
								- 101-
				the states				

Gas proportional detector count rate decreased

10% after 15 hour static test using 39" cable. \leq

 $\leq~$ 10% after 5 hour static test using 39" cable and alpha/beta counter.

Signature <u>Aum Aum</u> C4B 02/26/2013 Page <u>7 of 3</u> Serving

ORM C4B 02/26/2013

Serving The Nuclear Industry Since 1962

Date 27-507-14

Attachment

Efficiencies taken with 43-93 SN:323034

SrY90 SN:5281

Size: 94422dpm Background: 201cpm Counts: 28843cpm 4pi Eff: 30.33%

Am241 SN:C3-880 Size: 232828dpm Background: 0cpm Counts: 53922cpm 4pi Eff: 23.15%

43-93 SN:323018

SrY90 SN:5281

Size: 94422dpm Background: 229cpm Counts: 30736cpm 4pi Eff: 32.30% **Am241 SN:C3-880** Size: 232828dpm Background: 0cpm Counts: 55185cpm 4pi Eff: 23.70%

M	Designer and Manufacturer of Scientific and Industrial Instruments	CERTIFICA	TE OF C	ALIBRATION	Son Oak Street 325-235-5494 Sweetwater, TX 795	10 86	744 Dutchtown R 5-392-4601 loxville, TN 3793	oad 2, U.S.A.
CUSTOMER	TERRANEAR PMC LLC					ORDER NO	20252913/	411312
Mfg.	Ludlum Measurements, Inc.	Model		19	Serial	No. 296	424	
Mfg.		Model			Serial	No		
Cal. Date	16-Sep-14	Cal Due Date	1	6-Sep-15	Cal. Interval	1 Year Met	erface	202-1070
	✓applies to applicable instr. and					<u>32</u> %		6.8 mm Hg
 New Inst ✓ Mechanic ✓ F/S Resp ✓ Audio ck 	cal ck. 🖌 Met o. ck 🖌 Res	er Zeroed		Background Sub Window Operati Batt. ck. (Min. V	otract on olt) <u>2.2 V</u> D	☐ Input S ☑ Geotro	Sens. Linearity opism	monto
Calibrated	I in accordance with LMI SOP 14 Set685V Input S				ordance with LMI SC	Threshold		mV
	eadout (2 points) Ref./Inst.				Ref./Inst.		996	V
COMMENT	S:							

Gamma Ca	libration: GM detectors position	ned perpendicular to s	source except for M 44-9 in whi	ich the fro	nt of probe faces sour	ce.	And the second second second	
			FERENCE	IN	STRUMENT R	EC'D	INSTRUM	
	RANGE/MULTIPLI	ER CA	AL. POINT	"A	S FOUND REA	DING"		READING*
	5000	4000	uR/hr	_	4000			000
	5000	1000	JR/hr		1000			00
	500	400µR	hr = 77000 cpm $\mu R/hr = 37600 cpm$		420		the second se	20
	500	100	uR/hr		105			0
	250	200µF	hr = 37600 cpm		210		20	00
	250	100	JR/hr		105		10	
	50	7700	cpm		43		40	
	50	1920			10.5		10	
	25	3760	cpm		21		20	2
	25	940	cpm		5.2		5	
	*Uncertainty within ± 10% C	.F. within ± 20%					Range(s) Cal	ibrated Electronically
		INSTRUMENT	INSTRUMENT		REFERENCE	INST	RUMENT	INSTRUMENT
		RECEIVED	METER READING*		CAL. POINT	REC	EIVED	METER READING*
Digital	on L. F On F			Log				
Readout				Scale				
other Interna	surements, Inc. certifies that the abc ational Standards Organization mem	bers or have been deriv	ed from accepted values of natural	o the Nation physical co	nal Institute of Standards Instants or have been der			on facilities of techniques. ation License No. LO-1963
	on system conforms to the requirem				781 1131		696 1909 F	1916CP 5105 5717
Reference	ce Instruments and/or Source	es: Cs-137 S/N: 059	2171CP 2261CP 72	20 [] / 34				
5719	9CO 60646 70897	73410 E552	G112 M565 S-394	S-1054	T10081	2 Neutron A	m-241 Be 5/N.	
	pha S/N	[Beta S/N		[Other		
🖌 m	500 S/N 19056	6	Oscilloscope S/N		[Multime	ter S/N	86250390
Calibrat	ted By:	su 7	la		Date	16.5	CPT. (4	
Review	ved By: Phase	4.			Date	16 Se	p14	
	ficate shall not be reproduced excep 22A 05/19/2014 Page	ot in full, without the writt	en approval of Ludlum Measuremer	nts, Inc.	AC Ins Only			Pot) and Continuity Test

APPENDIX E SURVEY RECORD FORM

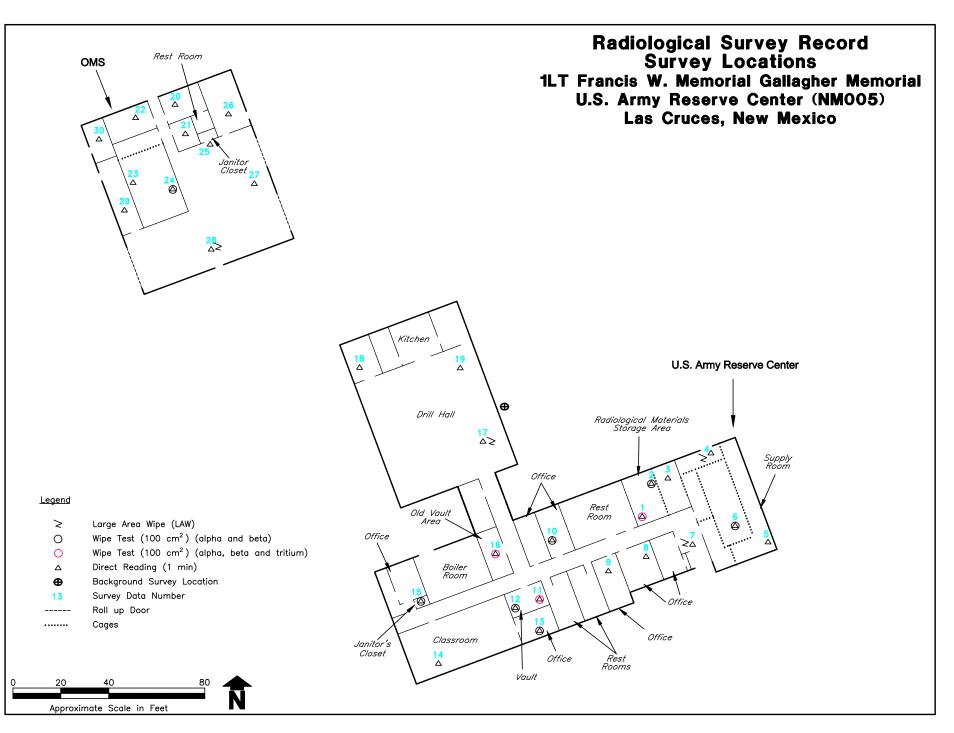
					and Carr	-		Date :		10/20/1	4		Team No.	:	JG/AM
	1	Radiolog	jical Sul	rvey Rec	ora Fori	n	S	ite Name :	1LT Francis W	. Gallagher Mem	orial USARC (NM005)		Locatio	n	Las Cruces, N
	ey Descr				vipe, micoı	R, and large	e area wip	e surveys to	o determine t	ne radiologica	al condition				
	ation / Are		Survey U			7									
	er/Probe		r/Probe			Cal. Due	Date		ncy (c/d)			(dpm/1	$100 \text{ cm}^2 \text{ or } \mu \text{R/hr}$		MDA (dpm
	1odel n 43-93		ial # 23034	Area	(cm) 00	02/16/	15	α 0.2315	<u>в</u> 0.3033		<u>α</u> 42.8		<u>в</u> 915.9	γ N/A	α 58.6
udlun			5424		/A	02/10/		N/A	0.0000 N/A		N/A		N/A	15.2	N/A
In	strument	Notes:				•					e count time 1 mi	nute,		-	.86 Action Level
Lu	ıdlum 43-	93 with									, that equates to	11			/100 cm ²)
I	Ludlum 2	360								concrete sur	10min)* bkg cpm face)	}]		α 33.1	β 581.1
			motramor	it buokgrou				ł.	nination		1400)				Expo
	Direct Fie	eld (acpm)		t Field		ole / Smear		ole / Smear	Removable	Lg Area Wipe			emovable / Smear		
·	(dpm / 100 cm ²) Field (cpm / 100 cm ²) Field (dpm / 100 cm ²) Field (dpm / 100 cm ²) Field (cpm) Lab Data (dpm / 100 cm ²) (upd / 100 cm ²)										(µR/hr)				
		α β α													
1					-					-			-7.76 U	17.0	
2	3	255	-29.8	-75.2	11	275	4.8	-9.2	-	-	0.0305	U	0.338 U	-	15.5
3	4	264	-25.5	-45.5	-	-	-	-	-	-	-		-	-	17.0
4	3	253	-29.8	-81.8	-	-	-	-	5	261	-		-	-	15.5
5	0	277	-42.8	-2.6	-	-	-	-	-	-	-		-	-	18.0
6	4	262	-25.5	-52.1	8	309	-8.2	102.9	-	-	0.943		0.372 U	-	15.5
7	2	265	-34.1	-42.2	-	-	-	-	3	274	-		-	-	17.0
8	4	197	-25.5	-266.4	-	-	-	-	-	-	-		-	-	16.0
9	7	264	-12.5	-45.5	-	-	-	-	-	-	-		-	-	17.0
10	0	242	-42.8	-118.0	8	275	-8.2	-9.2	-	-	0.106	U	0.337 U	-	16.0
11	6	413	-16.8	445.8	9	272	-3.9	-19.1	-	-	0.234	U	0.737	2.38 U	24.0
12	3	412	-29.8	442.5	8	283	-8.2	17.1	-	-	0.141	U	-0.242 U	-	26.0
13	2	279	-34.1	4.0	6	277	-16.8	-2.6	-	-	0.0231	U	0.206 U	-	19.0
14	2	279	-34.1	4.0	-	-	-	-	-	-	-		-	-	17.0
15	8	362	-8.2	277.6	7	282	-12.5	13.8	-	-	0.101	U	0.429 U	-	19.0
						ly 1 m ² or gr			100cm ² calcu	lationa			Surveyed by	y: Joe Green	
				llected in ev		11 15 8550110				14110115.					
S	Survey					litative mea	surements	5.							
	lotes:	,		,			,	,	DD. (Non-det	,					
		0			. ,		0		0	alue is subtra					
			•			0		0	•	a portion of th g very little or					
			e radioacti	0				i o i oi oump		g 101 y 1110 01					

	R	adiolog	jical Sur	vey Rec	ord Fo	rm		Date :		10/20/14		Team No. : JG/		
		_	(continua	tion sheet)		5	Site Name :	1LT Francis	N. Gallagher Memoria	al USARC (NM005)	Location		Las Cruces, N
Surve	ey Desc	ription :	Direct, we	et and dry w	vipe, micor	R, and larg	ge area wip	be surveys to	determine	the radiological c	ondition			
Loca	tion / Ar	ea :	Survey U	nit 1										
								Contan	nination					Expo
	Direc	ct (cpm)		t Field 100 cm ²)		le / Smear		ble / Smear m / 100 cm ²)		e Lg Area Wipe d (cpm)		movable / Smear ata (dpm / 100 cm ²)		Contact
-	α	β		β		100 cm ²) β	ετιεία (αρ	β B	α	β	α	β	Tritium	(µR/hr)
16	2	231	-34.1	-154.3	4	255	-25.5	-75.2	-	-	0.267 U	0.337 U	-2.57 U	14.5
17	6	206	-16.8	-236.7	-	-	-	-	1	287	-	-	-	11.0
18	3	287	-29.8	30.3	-	-	-	-	-	-	-	-	-	12.5
19	5	221	-21.2	-187.3	-	-	-	-	-	-	-	-	-	11.0
20	1	259	-38.4	-62.0	-	-	-	-	-	-	-	-	-	17.0
21	1	270	-38.4	-25.7	-	-	-	-	-	-	-	-	-	15.0
22	0	254	-42.8	-78.5	-	-	-	-	-	-	-	-	-	17.0
23	8	348	-8.2	231.5	-	-	-	-	-	-	-	-	-	15.5
24	4	363	-25.5	280.9	5	261	-21.2	-55.4	-	-	0.0295 U	1.25	-	17.0
25	5	324	-21.2	152.3	-	-	-	-	-	-	-	-	-	16.0
26	4	231	-25.5	-154.3	-	-	-	-	-	-	-	-	-	14.5
27	4	260	-25.5	-58.7	-	-	-	-	-	-	-	-	-	9.0
28	5	332	-21.2	178.7	-	-	-	-	3	260	-	-	-	16.0
29	6	371	-16.8	307.3	-	-	-	-	-	-	-	-	-	20.0
30	7	329	-12.5	168.8	-	-	-	-	-	-	-	-	-	19.0
31														
32														
33														
34														
35														
36 37														
S	urvey otes:	Ludlum 4 Dose rat * Remov U - Analy Negative from a sa statistica	es were col able/Smear yte was ana results occ ample value	active area lected in ev Field value alyzed for, b cur when a that is less n of negativ	a of 100 cm very room. es are qua put not dete previously s than the	n ² is assum litative mea ected abov determine backgroun	ned in direct asurement e the MDL d counting d value. No	ct field dpm/1 s. , MDA, or LC instrument b egative value	DD. (Non-de background es represent			Surveyed by:	Joe Green	

APPENDIX F SAMPLE DESCRIPTION LOG

SAMPLE LOCATION DESCRIPTION LOG

Survey Location:


1LT Francis W. Gallagher Memorial USARC (NM005)

Survey Unit 1

No.	Survey Location	Data Type {Large Area Wipe (LAW), Wipe Test (100 cm ²)(Wipe) Direct}	Lab Sample ID	Sample Location (Starting Point is SE Corner)	Description of Location
1	Admin Bldg.	Direct,Wipe	1ABT	15′N 30′W	Cage Storage Area NBC,Linoleum tile
2	Admin Bldg.	Direct,Wipe	2AB	14′N 22′W	Cage Storage Area NBC, Linoleum tile
3	Admin Bldg.	Direct	-	12´N 7´W	Cage Storage Area,Linoleum tile
4	Admin Bldg.	Direct,LAW	-	40′N 12′W	Cage Storage Area, Linoleum tile
5	Admin Bldg.	Direct	-	3′N 4′W	Cage Storage Area, Linoleum tile
6	Admin Bldg.	Direct,Wipe	6AB	28′N 13′W	Cage Storage Area, Linoleum tile
7	Admin Bldg.	Direct,LAW	-	4′N 5′W	Entryway,Linoleum tile
8	Admin Bldg.	Direct	-	4′N 8′W	Office,Linoleum tile
9	Admin Bldg.	Direct	-	3′N 3′W	Office,Linoleum tile
10	Admin Bldg.	Direct,Wipe	10AB	14′N 8′W	Office,Linoleum tile
11	Admin Bldg.	Direct,Wipe	11ABT	2′N 3′W	Vault,Concrete
12	Admin Bldg.	Direct,Wipe	12AB	6′N 12′W	Vault,Concrete
13	Admin Bldg.	Direct,Wipe	13AB	3′N 7′W	Office,Linoleum tile
14	Admin Bldg.	Direct	-	3′N 28′W	Office,Carpet
15	Admin Bldg.	Direct,Wipe	15AB	2′N 4′W	Janitor Closet,Concrete
16	Admin Bldg.	Direct,Wipe	16ABT	2′N 4′W	Old Vault room,Linoleum tile
17	Admin Bldg.	Direct,LAW	-	4′N 4′W	Drill Hall,Linoleum tile
18	Admin Bldg.	Direct	-	5′N 3′W	Storage Area,Concrete
19	Admin Bldg.	Direct	-	47´N 7´W	Drill Hall,Linoleum tile
20	OMS	Direct	-	7′N 12′W	Office,Linoleum tile
21	OMS	Direct	-	5′N 4′W	Office,Linoleum tile
22	OMS	Direct	-	4′N 14′W	Office,Linoleum tile
23	OMS	Direct	-	24′N 15′W	Cage Storage Area,Concrete
24	OMS	Direct,Wipe	24AB		Cage Storage Area,Concrete
25	OMS	Direct	-	2′N 3′W	Janitor Closet,Concrete
26	OMS	Direct	-	4′N 6′W	Office,Linoleum tile
27	OMS	Direct	-	36´N 5´W	Bay,Concrete
28	OMS	Direct,LAW	-	3′N 35′W	Bay,Concrete
29	OMS	Direct	-	14´N 7´W	Storage Area, Concrete
30	OMS	Direct	-	1´N 4´W	Storage,Concrete

APPENDIX G SURVEY SKETCH

46143.gallagher/12.24.14-DST/A101

APPENDIX H HIGH RESULTS NARRATIVE

HIGH RESULTS NARRATIVE

Site : 1LT Francis W. Gallagher Memorial USARC (NM005)

Sample Location	Remarks
	There were no results that exceeded site assessment criteria.

APPENDIX I SITE PHOTOS

Gallagher_USARC_Front_View

Gallagher_USARC_Sample_1ABT

Gallagher_USARC_Sample_2AB

Gallagher_USARC_Sample_6AB

Gallagher_USARC_Sample_10AB

Gallagher_USARC_Sample_11ABT

Gallagher_USARC_Sample_13AB

Gallagher_USARC_Sample_16ABT

Gallagher_USARC_Sample_24AB

Gallagher_USARC_Sample_30

APPENDIX J ANALYTICAL RESULTS

a member of The GEL Group INC

P 843.556.8171 F 843.766.1178

www.gel.com

October 29, 2014

Daniel F. Caputo TerranearPMC, LLC 222 Valley Creek Blvd. Suite 210 Exton, Pennsylvania 19341

Re: TerranearPMC (Project No.46143) GALLAGHER MEMORIAL USARC Work Order: 359455

Dear Daniel Caputo:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on October 21, 2014. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4505.

Sincerely,

Neatter Shaffer

Heather Shaffer Project Manager

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

TPMC006 TPMC-TerranearPMC, LLC (Project No. 46143)

Client SDG: 359455 GEL Work Order: 359455

The Qualifiers in this report are defined as follows:

- * Indicates that a quality control analyte recovery is outside of specified acceptance criteria.
- ** Indicates the analyte is a Tracer compound.
- ** Indicates the analyte is a surrogate compound.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Heather Shaffer.

Neatter Shaffer

Reviewed by

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Address :	TerranearPMC, LL0 222 Valley Creek B Suite 210 Exton, Pennsylvania	lvd.									
Contact:	Daniel F. Caputo										
Project:	TerranearPMC (Pro	ject No.461	43)GALLA	GHER M	EMORIAL	USAR	RC				
Client Sample ID:	1AB				Projec	et:	TPMC00	0600			
Sample ID:	359455001				Client	ID:	TPMC00)6			
Matrix:	Swipe										
Collect Date:	20-OCT-14 10:10										
Receive Date:	21-OCT-14										
Collector:	Client										
Parameter	Qualifier	Result	DL	RL	Units	DF	Analyst	Date	Time	Batch	Method
Rad Gas Flow Pro	portional Counting										
GFPC, Gross A/B	, filter "As Received"										
Alpha	U	0.0951	0.476	0.500	dpm/Filter		JAOC 10/	27/14	1235	1430753	1
Beta	U	0.276	0.678	2.00	dpm/Filter						
The following Ana	lytical Methods were	performed:									
Method	Description					An	alyst Comn	nents			
1	EPA 900.0/SW846	5 9310/SM 711	0B Modified								

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Address :	TerranearPMC, LL0 222 Valley Creek B Suite 210 Exton, Pennsylvania	lvd.									
Contact:	Daniel F. Caputo										
Project:	TerranearPMC (Pro	ject No.461	43)GALLA	GHER M	EMORIAL	USAR	C				
Client Sample ID:	2AB				Projec	et:	TPMC00	600			
Sample ID:	359455002				Client	ID:	TPMC00	6			
Matrix:	Swipe										
Collect Date:	20-OCT-14 10:12										
Receive Date:	21-OCT-14										
Collector:	Client										
Parameter	Qualifier	Result	DL	RL	Units	DF	Analyst I	Date	Time	Batch	Method
Rad Gas Flow Pro	portional Counting										
GFPC, Gross A/B,	filter "As Received"										
Alpha	U	0.0305	0.493	0.500	dpm/Filter		JAOC 10/2	27/14	1228	1430753	1
Beta	U	0.338	0.588	2.00	dpm/Filter						
The following Ana	lytical Methods were	performed:									
Method	Description					An	alyst Comm	ents			
1	EPA 900.0/SW846	5 9310/SM 711	0B Modified								

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Address :	TerranearPMC, LL 222 Valley Creek B									
	Suite 210	10241								
Contact:	Exton, Pennsylvani Daniel F. Caputo	a 19341								
Project:	TerranearPMC (Pro	ject No.461	43)GALLA	GHER M	EMORIAL	USAR	RC			
Client Sample ID:		5	,		Projec		TPMC006	00		
Sample ID:	359455003				Clien		TPMC006			
Matrix:	Swipe									
Collect Date:	20-OCT-14 10:30									
Receive Date:	21-OCT-14									
Collector:	Client									
Parameter	Qualifier	Result	DL	RL	Units	DF	Analyst Da	ate T	Fime Batch	Method
Rad Gas Flow Pro	portional Counting									
GFPC, Gross A/B	, filter "As Received"									
Alpha		0.943	0.488	0.500	dpm/Filter		JAOC 10/27	14 12	233 1430753	1
Beta	U	0.372	0.611	2.00	dpm/Filter					
The following Ana	lytical Methods were	performed:								
Method	Description					An	alyst Commei	nts		
1	EPA 900.0/SW846	5 9310/SM 711	0B Modified				-			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Address :	TerranearPMC, LL0 222 Valley Creek B Suite 210 Exton, Pennsylvani	lvd.									
Contact:	Daniel F. Caputo										
Project:	TerranearPMC (Pro	ject No.461	43)GALLA	GHER M	EMORIAL	USAR	C				
Client Sample ID:	10AB				Projec	et:	TPMC0	0600			
Sample ID:	359455004				Client	ID:	TPMC0	06			
Matrix:	Swipe										
Collect Date:	20-OCT-14 10:45										
Receive Date:	21-OCT-14										
Collector:	Client										
Parameter	Qualifier	Result	DL	RL	Units	DF	Analyst	Date	Time	Batch	Method
Rad Gas Flow Pro	portional Counting										
GFPC, Gross A/B,	, filter "As Received"										
Alpha	U	0.106	0.486	0.500	dpm/Filter		JAOC 10	/27/14	1233 1	1430753	1
Beta	U	0.337	0.653	2.00	dpm/Filter						
The following Ana	lytical Methods were	performed:									
Method	Description					An	alyst Comn	nents			
1	EPA 900.0/SW846	5 9310/SM 711	0B Modified								

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Address :	TerranearPMC, LLC 222 Valley Creek B Suite 210	lvd.								
	Exton, Pennsylvania	a 19341								
Contact:	Daniel F. Caputo	· . NI 461		CHED M						
Project:	TerranearPMC (Pro	ject No.461	43)GALLA	GHER M			aC			
Client Sample ID:	11AB				Proje	ct:	TPMC0060)		
Sample ID:	359455005				Clien	t ID:	TPMC006			
Matrix:	Swipe									
Collect Date:	20-OCT-14 10:50									
Receive Date:	21-OCT-14									
Collector:	Client									
Parameter	Qualifier	Result	DL	RL	Units	DF	Analyst Dat	o Tim	Dotoh	Mathad
	-	Kesult	DL	KL	Units	DF	Analyst Da	e Im	e Batch	Method
	portional Counting									
,	, filter "As Received"	0.224	0.401	0.500	1 /12'1/		10/07/1	4 1000	1420752	1
Alpha Beta	U	0.234 0.737	0.491 0.570	0.500 2.00	dpm/Filter dpm/Filter		JAOC 10/27/1	4 1233	1430753	1
	1 Contractor to con-		0.370	2.00	upii/riitei					
0	lytical Methods were	performed:								
Method	Description					An	alyst Comment	S		
1	EPA 900.0/SW846	5 9310/SM 711	0B Modified							

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Address :	TerranearPMC, LLC 222 Valley Creek Bl Suite 210	vd.									
	Exton, Pennsylvania	19341									
Contact:	Daniel F. Caputo		2) () () ()				C				
Project:	TerranearPMC (Proj	ect No.4614	3)GALLAC	JHER ME			C				
Client Sample ID:	12AB				Projec	et:	TPMC(0600			
Sample ID:	359455006				Client	ID:	TPMC(006			
Matrix:	Swipe										
Collect Date:	20-OCT-14 10:52										
Receive Date:	21-OCT-14										
Collector:	Client										
Parameter	Qualifier	Result	DL	RL	Units	DF	Analyst	Date	Time	Batch	Method
 Rad Gas Flow Prop	ortional Counting										
-	filter "As Received"										
Alpha	U	0.141	0.488	0.500	dpm/Filter		JAOC 1)/27/14	1233	1430753	1
Beta	U	-0.242	0.538	2.00	dpm/Filter						
The following Anal	lytical Methods were	performed:									
Method	Description					Ana	lyst Com	ments			
1	EPA 900.0/SW846	9310/SM 7110	B Modified								

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Address :	TerranearPMC, LL0 222 Valley Creek B Suite 210										
_	Exton, Pennsylvania	a 19341									
Contact:	Daniel F. Caputo										
Project:	TerranearPMC (Pro	ject No.461	43)GALLA	GHER M			lC				
Client Sample ID:	13AB				Projec	ct:	TPMC0	0600			
Sample ID:	359455007				Client	t ID:	TPMC0	06			
Matrix:	Swipe										
Collect Date:	20-OCT-14 10:54										
Receive Date:	21-OCT-14										
Collector:	Client										
Parameter	Qualifier	Result	DL	RL	Units	DF	Analyst	Date	Time	Batch	Method
Rad Gas Flow Pro	portional Counting										
	filter "As Received"										
Alpha	U	0.0231	0.497	0.500	dpm/Filter		JAOC 10	/27/14	1234	1430753	1
Beta	U	0.206	0.520	2.00	dpm/Filter						
The following Ana	lytical Methods were	performed:									
Method	Description					An	alyst Comr	nents			
1	EPA 900.0/SW846	5 9310/SM 711	0B Modified				-				

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Address :	TerranearPMC, LL0 222 Valley Creek B Suite 210 Exton, Pennsylvania	lvd.								
Contact:	Daniel F. Caputo									
Project:	TerranearPMC (Pro	ject No.461	43)GALLA	GHER M	EMORIAL U	USAR	C			
Client Sample ID:	15AB				Project	t:	TPMC0060	0		
Sample ID:	359455008				Client	ID:	TPMC006			
Matrix:	Swipe									
Collect Date:	20-OCT-14 11:05									
Receive Date:	21-OCT-14									
Collector:	Client									
Parameter	Qualifier	Result	DL	RL	Units	DF	Analyst Da	te Tir	ne Batch	Method
Rad Gas Flow Pro	portional Counting									
GFPC, Gross A/B	, filter "As Received"									
Alpha	U	0.101	0.499	0.500	dpm/Filter		JAOC 10/27/	14 1234	1430753	1
Beta	U	0.429	0.622	2.00	dpm/Filter					
The following Ana	lytical Methods were	performed:								
Method	Description					Ana	alyst Commer	ts		
1	EPA 900.0/SW846	5 9310/SM 711	0B Modified							

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Address :	TerranearPMC, LL0 222 Valley Creek B Suite 210 Exton, Pennsylvania	lvd.									
Contact:	Daniel F. Caputo	4 17571									
Project:	TerranearPMC (Pro	ject No.461	43)GALLA	GHER M	EMORIAL	USAR	кС				
Client Sample ID:	16AB				Projec	:t:	TPMC0	0600			
Sample ID:	359455009				Client	ID:	TPMC0	06			
Matrix:	Swipe										
Collect Date:	20-OCT-14 11:10										
Receive Date:	21-OCT-14										
Collector:	Client										
Parameter	Qualifier	Result	DL	RL	Units	DF	Analyst	Date	Time	Batch	Method
Rad Gas Flow Pro	portional Counting										
GFPC, Gross A/B	, filter "As Received"										
Alpha	U	0.267	0.486	0.500	dpm/Filter		JAOC 10	/27/14	1233 1	430753	1
Beta	U	0.337	0.566	2.00	dpm/Filter						
The following Ana	lytical Methods were	performed:									
Method	Description					An	alyst Comn	nents			
1	EPA 900.0/SW846	5 9310/SM 711	0B Modified								

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Address :	TerranearPMC, LLC 222 Valley Creek Bl Suite 210 Exton, Pennsylvania	vd.									
Contact:	Daniel F. Caputo	17541									
Project:	TerranearPMC (Proj	ect No.4614	3)GALLAO	GHER ME	MORIAL	USAR	С				
 Client Sample ID:	24AB				Projec	et:	TPMC0	0600			
Sample ID:	359455010				Client	ID:	TPMC0	06			
Matrix:	Swipe										
Collect Date:	20-OCT-14 12:00										
Receive Date:	21-OCT-14										
Collector:	Client										
 Parameter	Qualifier	Result	DL	RL	Units	DF	Analyst	Date	Time	Batch	Method
 Rad Gas Flow Prop	oortional Counting										
GFPC, Gross A/B,	filter "As Received"										
Alpha	U	0.0295	0.479	0.500	dpm/Filter		JAOC 10	/27/14	1236	1430753	1
Beta		1.25	0.703	2.00	dpm/Filter						
The following Anal	lytical Methods were	performed:									
Method	Description					Ana	alyst Com	nents			
1	EPA 900.0/SW846	9310/SM 7110	B Modified								

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company :	TerranearPMC, LLC											
Address :	222 Valley Creek Bly	vd.										
	Suite 210											
	Exton, Pennsylvania	19341										
Contact:	Daniel F. Caputo											
Project:	TerranearPMC (Proje	ect No.46143	B)GALLAG	HER MEN	IORIAL	USAR	5					
Client Sample ID:	1T				Projec	et:	TPMC0	0600				
Sample ID:	359455011				Client	ID:	TPMC0	06				
Matrix:	Swipe											
Collect Date:	20-OCT-14 10:10											
Receive Date:	21-OCT-14											
Collector:	Client											
Parameter	Qualifier	Result	DL	RL	Units	DF	Analyst	Date	Time	Batch	Meth	od
Rad Liquid Scintill	ation Analysis											
LSC, Direct Tritiur	n, Filter "As Received	"										
Tritium	U	-7.76	16.5	100	dpm/Filter		BYS1 10	/27/14	1858	1430968	1	
The following Anal	ytical Methods were p	erformed:										
Method	Description					Ana	lyst Comr	nents				
 1	GL-RAD-A-002											

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company :	TerranearPMC, LLC											
Address :	222 Valley Creek Bly	vd.										
	Suite 210											
	Exton, Pennsylvania	19341										
Contact:	Daniel F. Caputo											
Project:	TerranearPMC (Proje	ect No.46143	B)GALLAG	HER MEN	IORIAL	USAR	2					
Client Sample ID:	11T				Projec	et:	TPMC0	0600				_
Sample ID:	359455012				Client	ID:	TPMC0	06				
Matrix:	Swipe											
Collect Date:	20-OCT-14 10:50											
Receive Date:	21-OCT-14											
Collector:	Client											
Parameter	Qualifier	Result	DL	RL	Units	DF	Analyst	Date	Time	Batch	Method	1
Rad Liquid Scintill	ation Analysis											
LSC, Direct Tritiur	n, Filter "As Received											
Tritium	U	2.38	16.4	100	dpm/Filter		BYS1 10	/27/14	1914	1430968	1	
The following Anal	ytical Methods were p	erformed:										
Method	Description					Ana	lyst Comr	nents				_
1	GL-RAD-A-002						-					

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company :	TerranearPMC, LLC											
Address :	222 Valley Creek Bly	vd.										
	Suite 210											
	Exton, Pennsylvania	19341										
Contact:	Daniel F. Caputo											
Project:	TerranearPMC (Proje	ect No.46143	B)GALLAG	HER MEN	IORIAL	USAR	2					
Client Sample ID:	16T				Projec	et:	TPMC0	0600				-
Sample ID:	359455013				Client	ID:	TPMC0	06				
Matrix:	Swipe											
Collect Date:	20-OCT-14 11:10											
Receive Date:	21-OCT-14											
Collector:	Client											
												_
Parameter	Qualifier	Result	DL	RL	Units	DF	Analyst	Date	Time	e Batch	Method	L
Rad Liquid Scintill	ation Analysis											
LSC, Direct Tritiur	n, Filter "As Received											
Tritium	U	-2.57	15.7	100	dpm/Filter		BYS1 10	/27/14	1930	1430968	1	
The following Anal	ytical Methods were p	erformed:										
Method	Description					Ana	lyst Comr	nents				_
1	GL-RAD-A-002											

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC	Summary

Report Date: October 29, 2014

Page 1 of 2

TerranearPMC, LLC 222 Valley Creek Blvd. Suite 210 Exton, Pennsylvania Contact: Daniel F. Caputo

Workorder: 359455

Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range Anlst	Date Time
Rad Gas Flow Batch 1430753									
QC1203195928 359455001 DUP Alpha	U	0.0951	U	-0.0387	dpm/Filter	N/A		N/A JAOC	10/27/14 14:10
Beta	U	0.276	U	0.403	dpm/Filter	N/A		N/A	
QC1203195927 MB Alpha			U	-0.199	dpm/Filter				10/27/14 12:36
Beta			U	-0.387	dpm/Filter				
Rad Liquid Scintillation Batch 1430968									
QC1203196620 LCS Tritium	211			238	dpm/Filter		113	(75%-125%) BYS1	10/27/14 20:03
QC1203196621 LCSD Tritium	211			220	dpm/Filter	7.74	104	(0%-20%)	10/27/14 20:19
QC1203196619 MB Tritium			U	-9.66	dpm/Filter				10/27/14 19:47

Notes:

The Qualifiers in this report are defined as follows:

- ** Analyte is a Tracer compound
- < Result is less than value reported
- > Result is greater than value reported
- BD Results are either below the MDC or tracer recovery is low
- FA Failed analysis.
- H Analytical holding time was exceeded
- J Value is estimated
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- M M if above MDC and less than LLD
- $M \qquad REMP \ Result > MDC/CL \ and < RDL$
- $N\!/\!A$ $\,$ RPD or %Recovery limits do not apply.

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Parmna	me NOM Sample Qual QC Units RPD% REC% Range Anlst Date Tim
N1	See case narrative
ND	Analyte concentration is not detected above the detection limit
NJ	Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
Q	One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
R	Sample results are rejected
U	Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
UI	Gamma SpectroscopyUncertain identification
UJ	Gamma SpectroscopyUncertain identification
UL	Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
Х	Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
Y	Other specific qualifiers were required to properly define the results. Consult case narrative.
٨	RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
h	Preparation or preservation holding time was exceeded
	dicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable. Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than

 $^$ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.

* Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

There are no "Data Exception Reports" associated with this analytical report.

Page: of of	the state of the second s		GEL Laboratories, LLC
2 2		custony and Analytical Inchucsu	zułu Savage ruau Charleston, SC 29407
(1)	GEL Work Order Number: 30455	,	Phone: (843) 556-8171 Fax: (843) 766-1178
Client Name: Tenener PMC	Phone #: 215 586-1092	Sample Analysis Requested ⁽⁵⁾	$^{ m (6)}$ (Fill in the number of containers for each test)
. Y	USAAC (NAParticos)		C Preservative Type (6)
Address:		sample be considered: conta	
Collected by: reduce Send Results To:	ults To: K Schueff & Aner-	7	Comments Note: extra sample is
Sample ID * For composites - indicate start and stop date/time	Date Collected Collec	224 Reguli SCA Reguli Marae Marae	required for sample specific QC
Prether him USAACINO, 2AB, 6AB, 10AB, 11AP 10-20-14			Kapa to Semantic
General and and and and and and a man and a man	624AB10-20 W WA P	N N N	lebels for time
Belleder USARC 18, 117, 16T	10-20-14 N N/A P	3 X	collected
TAT Requested: Normal: 10 Rush: Specify:	(Subject to Surcharge) Fax Results: Yes /	No Circle Deliverable: C of A	/ QC Summary / Level 1 / Level 2 / Level 3 / Level 4
Remarks: Are there any known hazards applicable to these samples? If so, please list the hazards	o these samples? If so, please list the hazards		Sample Collection Time Zone
Sampling the very	ify existing condition	¢	Central Other
Chain of Custody Signatures	ody Signatures	Sam	Sample Shipping and Delivery Details
Time	Received by (signed) Date Time	GEL PM: Heatler	Shaffer
14/14/14/14/15	1.Y. Went relating 0905	Method of Shipment: Feedber	bate Shipped: $10 - 30 - 14$
2		Airbill #: 3645'	5320 3283
3 V		Airbill #:	
 Chain of Custody Number = Client Determined Castion of Custody Number = Client Determined OC Codes: N = Normal Sample, FB = Trip Blank, FD = Field Duplicate, EB = Equipment Blank, MS = Matrix Spike Sample, MSD = Matrix Spike Duplicate Sample, G = Grab, C = Composite 	B = Equipment Blank, MS = Matrix Spike Sample, MSD = Matrix Spike	e Duplicate Sample. G = Grab, C = Composite	For Lab Receiving Use Only
3. Field Filtered: For liquid matrices, indicate with a - Y - for yes the sample was field filtered or - N - for sample was not field filtered.	was field filtered or - N - for sample was not field filtered. •• WW=Warte Water W=Water SO=Scall SD=Schinger SL=Shirler S	SS=Solid Waste. 0=0il. F=Filter. P=Wine. IJ=Urine.	EFEcal N=Nasal VFS NO
 Francis, Dir Dittering, nach, Grieguested. (i.e. 8260B, 60108/7470A) and number of containers provided for each (i.e. 8260B - 3, 60108/7470A - 1). Sample Analysis Requested: Analytical method requested (i.e. 8260B, 60108/7470A) and number of containers provided for each (i.e. 8260B - 3, 60108/7470A - 1). 	0.8/14/10.4.) and number of containers provided for each (i.e. 8260B - 3, 60	0010 <i>B/7470A</i> - 1).	Cooler Tem
6) Preservative Type: HA = Hydrochloric Acid, NI = Nutric Acid, SH = Sodium Hydroxide, SA = Sulture Acid, HX = Ascorbic Acid, HX = Hexane, SI = Sodium Thiosultate, II no preservative is added = Jeave field blank WHITE = LABORATORY YELLOW = FILE PINK = CLIENT	m Hydroxide, SA = Sulturic Acid, AA = Ascorbic Acid, $HX = Hexane, Si$ ATORY YELLOW = FILE	<pre>et = Sodium Iniosultate, it no preservative is added = PINK = CLIENT</pre>	

GEL Laboratories LLC

SAMPLE RECEIPT & REVIEW FORM

Client:				SDG/AR/COC/Work Order: 359455 359454 IK 10/2010				
Received By: T. WUNT				Date Received: 10 0114				
		*If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.						
		Maximum Net Counts Observed* (Observed Counts - Area Background Counts): 0 CPM						
Classified Radioactive II or III by RSO?		If yes, Were swipes taken of sample contatiners < action levels?						
Package, COC, and/or Samples marked as			싃					
bery	llium or asbestos containing?				s, samples are to be segregeated as Safety Controlled Samples, and opened by the GEL Safety Group.			
	ped as a DOT Hazardous? ples identified as Foreign Soil?		Ϋ́	Haza	rd Class Shipped: UN#:			
Sample Receipt Criteria			A					
Shipping containers received intact		Yes	AN	°N N	Comments/Qualifiers (Required for Non-Conforming Items) Circle Applicable:			
1	Shipping containers received intact and sealed?	χ			Seals broken Damaged container Leaking container Other (describe)			
2	Samples requiring cold preservation within $(0 \le 6 \text{ deg. C})$?*		Х		Preservation Method: Ice bags Blue ice Dry ice None Other (describe) *all temperatures are recorded in Celsius			
2a	Daily check performed and passed on IR temperature gun?	X			Tomperature Device Serial #: Secondary Temperature Device Serial # (If Applicable): (30530790			
3	Chain of custody documents included with shipment?	X						
4 Sample containers intact and sealed?		Х			Circle Applicable: Seals broken Damaged container Leaking container Other (describe)			
5	Samples requiring chemical preservation at proper pH?		X		Sample ID's, containers affected and observed pH: If Preservation added, Lot#:			
6	VOA vials free of headspace (defined as < 6mm bubble)?		X		Sample ID's and containers affected:			
7	Are Encore containers present?			X	(If yes, immediately deliver to Volatiles laboratory)			
8	Samples received within holding time?	χ			ID's and tests affected:			
9	Sample ID's on COC match ID's on bottles?	X			Sample ID's and containers affected:			
10	Date & time on COC match date & time on bottles?			Х	Sample ID's affected: SEE Continuation ShEET			
11	Number of containers received match number indicated on COC?	X			Sample ID's affected:			
12	Are sample containers identifiable as GEL provided?			X				
13	COC form is properly signed in relinquished/received sections?	X						
				Circle Applicable: FedEx Air FedEx Ground UPS Field Services Courier Other 8645 5530 3283-216				
			:					
PM (or PMA) review: Initials Date Date Page of GL-CHL-SR-001								

"1.

GEL Laboratories LLC SAMPLE RECEIPT & REVIEW CONTINUATION FORM

Client: <u>TPMC</u>		0120114		· · ·	· · · · ·
}*******************************	1/11	<u>^(</u>	10:50		
	16"	11	11:10		
USARC 1	AB	(1	10°.10		
	2AB		10:12		
	6AB		10:30		
	OAB		10:45	·····	
	<u>ILAB</u>		10:50		
·····	12 AB		10:52		
	13 AB		10:54		
	IS AB		11:05		
	16 AB		11:10	-	
	Q4AB		12:00		
		. <u></u>			
	under mit den sin den en de de ser de la desta de s				
		·····			
	Î				

State	Certification
Alaska	UST-110
Arkansas	88-0651
CLIA	42D0904046
California NELAP	01151CA
Colorado	SC00012
Connecticut	PH-0169
Delaware	SC000122013–10
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-12-00283, P330-12-00284
6	SC00012
Georgia	
Georgia SDWA	967
Hawaii	SC000122013-10
Idaho Chemistry	SC00012
Idaho Radiochemistry	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky	90129
Louisiana NELAP	03046 (AI33904)
Louisiana SDWA	LA130005
Maryland	270
Massachusetts	M-SC012
Michigan	9976
Mississippi	SC000122013-10
Nebraska	NE-OS-26-13
Nevada	SC000122014-1
New Hampshire NELAP	2054
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
Oklahoma	9904
Pennsylvania NELAP	68-00485
Plant Material Permit	PDEP-12-00260
South Carolina Chemistry	10120001
South Carolina GVL	23611001
South Carolina Radiochemi	10120002
Tennessee	TN 02934
Texas NELAP	T104704235-14-9
Utah NELAP	SC000122014–16
Vermont	VT87156
Virginia NELAP	460202
Washington	C780–12
Wisconsin	999887790

List of current GEL Certifications as of 29 October 2014